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EXECUTIVE SUMMARY 

Ground-based processing systems for aviation applications may process and store flight-critical 
data.  Hence, they must be trustworthy so that the integrity of the data can be assured.  To be 
trustworthy, a safety-critical, ground-based avionics system should provide not only security, but 
also a number of other system properties, such as reliability, safety, and quality of service.  The 
increasing reliance on data networks and commercial off-the-shelf (COTS) components has 
continued to expand the focus of safety and security from individual subsystems to the 
connections between them. 
 
Issues in making a COTS component-based, ground-based processing system for aircraft 
maintenance trustworthy and secure have been investigated.  Three guidance documents 
constitute the basis of the investigation:  (1) RTCA DO-178B, Software Considerations in 
Airborne Systems and Equipment Certification, which provides guidance for airborne systems; 
(2) DO-278, Guidelines For Communication, Navigation, Surveillance, and Air Traffic 
Management (CNS/ATM) Systems Software Integrity Assurance, which gives guidance for 
ground-based systems; and (3) the Health and Usage Monitoring Systems (HUMS) Advisory 
Circulars (AC) (AC 27-1B Change 1 and AC 29-2C Change 1), which provides guidance to 
achieve airworthiness approval for rotorcraft HUMS installation, credit validation, and continued 
airworthiness.   
 
This report includes the investigation results on a variety of issues that arise from the use of 
COTS components in safety-critical systems and the approaches needed to ensure the integrity of 
the data.  With a focus on HUMS, the report first gives a big picture view at the use of COTS in 
ground systems, the advantages and challenges posed by the use of COTS components.  The 
issues in applying the current available guidance relating to COTS and ground-based systems are 
also discussed.  This discussion includes the guidelines available in DO-278 pertaining to 
planning, acquiring, verifying, and managing the use of COTS software. 
 
Research was conducted into possible safety hazards and security threats leading to a loss of data 
integrity by using vulnerabilities and safety hazard analysis techniques.  The first step was to 
identify the threats and hazardous events in the system.  Following this identification, the 
possible security and safety impacts and the criticality to the system operation were determined.  
In addition, possible remedial techniques were devised to address the hazards and threats.  A risk 
mitigation strategy was adopted for each hazard and vulnerability corresponding to its risk level.  
This strategy may, in turn, affect some of the original requirement definitions at the design 
phase, resulting in a more robust design. 
 
A significant amount of research effort was devoted to the evaluation of the applicable DO-178B 
and DO-278 objectives to the COTS components of HUMS.  A preferred method of determining 
the applicability of the DO-178B and DO-278 objectives would be to perform a detailed analysis 
of each system component for all the objectives of the applicable guidance document and 
provide a rationale of compliance.  A sample of the research investigation into this technique is 
presented in the report, specific for the HUMS system under study.  It provides insight into 
possible ways in which such components may be analyzed, even if it is not always possible to 
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meet the required objectives due to the nature of COTS components.  Of key importance in this 
technique is the component’s assigned assurance level from the system safety assessment. 
 
To evaluate the feasibility of risk mitigation techniques to address various hazards and 
vulnerabilities in the HUMS system, a scaled down demonstration prototype of a HUMS system 
was developed.  In this prototype, risk management mechanisms are implemented in a scaled-
down, proof-of-concept version to determine the feasibility of such mechanisms.  The 
application of lessons learned from the case study and demonstration prototype were considered 
for the HUMS case, however, they may be applied to other ground-based systems (such as 
communication, navigation, surveillance, and air traffic management systems). 
 
As a part of this investigative report, a study on the use of COTS in a different domain area for 
the purpose of safety and security was performed.  Towards this end, a case study was performed 
on COTS component use in the development of a nuclear certifiable tester for the Minuteman III 
Inter Continental Ballistic Missile.  The study found that, similar to COTS components in 
HUMS, the primary advantage gained in adopting a COTS approach is the reduction in design 
cycle time and costs.  In addition, there is an absolute necessity for a planning, requirement, 
design approval, and certification process to incorporate COTS components in safety-critical 
applications. 
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1.  INTRODUCTION. 

The primary purpose of this research is to investigate the challenges involved in making the 
commercial off-the-shelf (COTS), ground-based processing system for aircraft maintenance 
trustworthy and secure.  With the advent of powerful information management and 
communication tools, flight data and maintenance records can be easily collected, analyzed, and 
disseminated for use by ground-based systems with COTS components.  This presents an 
opportunity for cost optimization and an increase in efficiency.   
 
For instance, in the helicopter domain, a health and usage monitoring system (HUMS) may 
provide several benefits including improved aircraft safety, increased availability and reliability, 
rapid determination of aircraft status, reduced overhaul and repair costs, and reduced scheduled 
component removal.  Many helicopter parts are dynamically loaded and are subject to develop 
fatigue cracks.  If a flight-critical part fails, it could cause a catastrophic accident.  As a result, 
many of these parts are life-limited and are assigned a safe-life limit in flight hours based on 
cumulative fatigue damage under variable amplitude loading.  For example, according to 
Miner’s theory of linear damage rule, the total fatigue is the sum of the cumulative damage 
proportions at different stress levels.  To calculate the safe-life limit, the aircraft’s usage or flight 
maneuvers (flight regimes), the frequency of those maneuvers, or the percent usage of that 
regime in a particular time frame is determined.  This information is combined with material 
strength characteristics and part test results, and then used to establish an acceptable calculated 
retirement time for these parts.  This calculated retirement time is conservative.  The parts are 
typically removed from service once the predefined retirement time is reached.  However, 
structural usage monitoring approaches dynamically adjust service life for individual 
components based on measured actual usage spectrums while the helicopter is being flown.  This 
results in cost optimization and efficient use. 
 
COTS components are used in many applications in ground-based aviation systems.  For these 
systems, the hardware is likely to be a set of personal computers (PC).  The operational 
software is also COTS, such as Microsoft® Windows®.  The flight data may be saved in COTS 
storage devices.  Also, it is very likely that the equipment is connected to the Internet or wireless 
networks, and installed in a nonsecure environment, and may involve human intervention in the 
decision-making process.  A different approach to system design, certification, or a mitigating 
action may be required to make the system fail-safe.   
 
As previously stated, the primary purpose of this research is to investigate the challenges 
involved in making ground-processing aircraft maintenance systems composed of COTS 
components trustworthy and secure.  The investigation primarily focuses on three areas: 
 
• Information and data protection.  Data can be corrupted at any point during its lifetime.  

Corruption can occur during computation, transmission, and storage.  This area deals 
with the protection and verification of information.  Traditional techniques to handle 
these problems are investigated and new techniques or combinations of existing 
approaches are suggested. 
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• Access security.  Flight data is very vulnerable to malicious attacks as it can be 
intercepted during data transfers and tampered with.  In order to prevent this, various 
forms of access security such as authentication, digital signature, and public key 
infrastructure are investigated.  The challenges involved in setting up such an 
infrastructure, as well as the issues related to accountability of flight data accessed are 
investigated. 

 
• Process and objectives for data integrity in ground-based COTS systems.  Data integrity 

must be maintained.  To ensure this, processes followed by the ground-based COTS 
systems are analyzed to identify possible fault conditions and their potential impact on 
safety requirements.  Fault mitigation techniques are proposed to ensure that all 
objectives for maintaining data integrity in ground-based COTS systems are satisfied. 

 
This report closely considers the existing guidance: (1) RTCA DO-178B, Software 
Considerations in Airborne Systems and Equipment Certification, which addresses the software 
components in airborne systems; (2) DO-278, Guidelines For Communication, Navigation, 
Surveillance, and Air Traffic Management (CNS/ATM) Systems Software Integrity Assurance, 
for the assurance of flight-related software contained in nonairborne CNS/ATM systems; and (3) 
the HUMS Advisory Circulars (AC) 27-1B Change 1 and AC 29-2C Change 1) for airworthiness 
approval for rotorcraft HUMS installation, credit validation, and continued airworthiness.  The 
applicability of this guidance material to COTS components and any remedial techniques that 
help meet the objectives outlined in the guidance were investigated. 
 
To investigate the above stated areas of focus, the following steps were taken: 

• Studied current and emerging industry approaches and guidelines for ground-based data 
protection schemes with a focus on HUMS and condition-based maintenance systems. 

• Studied the application of security and authentication approaches in other industries and 
identified their limitations and strengths.   

• Evaluated the objectives of DO-278 to the COTS components in HUMS application and 
the approaches listed in the Rotorcraft HUMS Advisory Circular for certifying HUMS 
ground-based systems that contain COTS components. 

• Developed a functional hazard and vulnerability analysis as a means for developing an 
effective risk mitigation strategy. 

• Performed two case studies involving COTS products to determine if they can be 
qualified by following the existing software aspects of certification guidance such as DO-
178B and DO-278.  Case study 1 investigated both Microsoft Windows and Microsoft® 
Access® as COTS components.  Case study 2 considered a customer-designed HUMS 
system, which used a COTS database management system (DBMS).   
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• Conducted a representative demonstration project to evaluate the flexibility of the 
proposed protection process and objectives in ensuring proper handling of flight-critical 
information. 

 
The report is structured as follows: 

• Section 2 defines the term COTS and describes the motivation to use COTS components 
in building ground-based, safety-critical systems.  A detailed discussion on the 
advantages (such as faster and cheaper development cycles) and challenges (such as 
ensuring safety and security) when using COTS components in safety-critical systems is 
provided.   

• Section 3 provides an introduction to the HUMS, which is chosen as a representative 
ground-based system for the study.  A functional description and a top-level architecture 
of a HUMS system are provided.  The safety and security concerns of a HUMS system 
are highlighted.   

• Section 4 provides a description of the current available guidance relevant to use of 
COTS components in safety-critical systems.  DO-278, DO-178B, and the HUMS 
Advisory Circular (HUMS AC) are evaluated to provide an introduction to the existing 
approaches of integrating COTS components in safety-critical systems.  This section also 
discusses the guidelines pertaining to planning, acquiring, verifying, and managing the 
use of COTS software available in the DO-278, DO-178B, and the HUMS ACs.  
Alternate approaches for acceptance of COTS software in safety-critical systems are also 
discussed.   

• Section 5 presents the current and emerging industry approaches regarding safety and 
security.  An introduction to cryptography, access security, intrusion detection, and 
information and data protection technologies is presented.  The use of these technologies 
is also discussed in context of a HUMS.  Toward this end, vulnerabilities to which 
airborne data is prone and the ways by which it can be protected are highlighted.  The 
notions of safety and risk mitigation strategies are introduced.  This section also presents 
a hazard and vulnerability analysis of HUMS and its various subsystems, such as 
ACARS, HUMS database, COTS software, HUMS gateway, and HUMS internal 
network.  Appropriate safety and risk mitigation approaches are presented.  The section 
concludes with a discussion on integration of safety and security approaches for HUMS. 

• Section 6 uses the HUMS as a representative ground-based system to see how the COTS-
specific objectives of DO-278 help in the planning, acquisition, verification, and 
configuration management process.  A preferred method of determining the applicability 
of the DO-278 objectives would be to perform a detailed analysis of each system 
component for all the objectives of this guidance document and provide a rationale of 
compliance.  To illustrate this technique, two case studies involving use of COTS 
software in a sample HUMS system are presented.  Case study 1 investigated both 
Microsoft Windows and Microsoft Access as COTS components.  Case study 2 
considered a customer-designed HUMS system, which used a COTS DBMS.  Both case 
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studies determine the applicability of the DO-278 objectives to the COTS component by 
performing a detailed analysis of that component for all the objectives of DO-278.   

• Section 7 provides a conclusion and identifies promising areas of further research.   

• Sections 8 and 9 document the references and the glossary of terms used in this 
document, respectively. 

• Appendix A describes the outline of the demonstration project implemented as a proof-
of-concept. 

• Appendix B describes the current standard used in evaluating the security of a system 
(i.e., the common criteria). 

• Appendix C presents a case study (within a different domain) in which COTS 
components are used to meet safety and security requirements. 

 
2.  OVERVIEW. 

DO-178B [1] provides guidance for software used in airborne systems, while DO-278  [2] 
provides guidance for flight-related software used in ground-based systems.  This report focuses 
on ground-based COTS systems and, as such, uses DO-278 for software assurance guidance.  
This report also considers ways and means of effectively using ground-based data and considers 
the HUMS advisory material (AC-27-1B Change 1 and AC-29-2C Change 1).   
 
Since this report revolves around the use of COTS components, a definition of the term COTS is 
imperative.  As defined in DO-278, COTS software is a term used to encompass a wide range of 
software that includes [2]: 
 
• Purchased software, 
• Nondevelopmental items, and 
• Software previously developed without consideration of DO-278 (or DO-178B). 
 
The typical characteristics of COTS software are [2]:  
 
• May or may not be approved through other approval processes 

• Partial or no data may be available as evidence of compliance with objectives of the DO-
278 (or DO-178B) 

The term off-the-shelf in COTS means that it was not developed by the user but was already 
existing. Rather than write volumes of new code, COTS software components are used as 
building blocks to be fit together to satisfy the requirements of new systems.  A COTS-based  
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system is one that uses one or more COTS components.  COTS-based systems have been cited to 
have multiple advantages including [3]: 
 
• Development cycle time is reduced.  The complex, sophisticated software systems typical 

today would not be practical to build if every function had to be written from scratch for 
each new system. 

• Total development cost, which includes both development and maintenance cost, is 
reduced.   

• The component is often already in extensive use with a large community of satisfied 
users. 

Consequently, software developers build many parts of new systems by adding functionality 
provided by COTS software components.  However, many challenges need to be addressed when 
using COTS in safety-critical systems including [3]: 
 
• It is often difficult to know what someone else did to ensure that their software 

component is reliable and will execute as expected when integrated into a new and 
complete system. 

• The user has limited or no access to source code or other software life cycle data. 

• The user usually has no control over the requirements and updates of the COTS. 

• There is a learning curve associated with the use of COTS. 

• COTS component developer may not have given any attention to safety-critical aspects. 
 
A paper developed by the international Certification Authorities Software Team (CAST) also 
documents several concerns when using a COTS operating system (OS) in safety-related 
systems, when the COTS OS does not have supporting DO-178B software life cycle data.  These 
concerns include (not an exhaustive list, since each project will have its own specific issues) [4]:  
 
• Integrity of COTS OS design and implementation is unknown to the user or integrator.   

• Unknown functionality and side effects in the COTS OS may exist.   

• The COTS OS can negatively affect the operation of other software applications that are 
executing using the functions of the OS and COTS resource management hardware and 
software. 

• Mitigation approaches to address the COTS OS’s potential effects are sometimes 
themselves implemented in the COTS OS’s environment. 
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• It may not be technically feasible to establish completion criteria for identifying and 
addressing all the failure condition classifications of functions that could be affected by 
the COTS OS. 

• Verification of correctness and completeness of functionality and mitigation schemes 
external to the COTS OS is difficult. 

• Errors may exist in the COTS OS that are unknown to the applicant or developer.   

• Patches to the COTS OS could have effects on the safe implementation. 

• The configuration control, problem report resolution, and continued operational safety of 
any application containing COTS software requires special attention. 

• It is difficult to satisfy the objectives of DO-178B/ED-12B (or other certification 
authority approved guidance) for all software in the airborne application when COTS 
software is used.    

• COTS products might be susceptible to viruses. 

• The support provided by COTS software suppliers may not be compatible with the long-
life needs of safety-critical systems (e.g., aircraft). 

As can be seen from the above discussion, the same characteristics that make COTS an attractive 
alternative to in-house development may cause serious safety and security concerns.  
Nevertheless, the potential gains of using COTS should not be ignored.  By following guidelines 
governing the use of COTS, systems can be built that have a high degree of reliability. 
 
3.  DESCRIPTION OF THE SYSTEM UNDER STUDY. 

For the purpose of this report, a generic HUMS has been selected as a representative ground-
based system.  A HUMS attempts to predict appropriate times to change parts based on actual 
use of the parts, as opposed to the more traditional technique of changing parts after a specific 
number of operating hours.  A HUMS can be defined in several ways.  One way is based on what 
it does as identified by the following characteristics [5]: 
 
• Health.  A measure of the overall flightworthiness of the aircraft.  Health is assessed by 

examining instantaneous indicators of the well-being of vital components on the aircraft, 
as well as by trend analysis of these indicators. 

 
• Usage.  A measure of how the life of components is being expended on the life-limited 

parts of the aircraft.  Usage determines the time to overhaul the major components. 
 
• Monitoring.  A means by which information can be gathered on the vital systems of the 

aircraft. 
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The HUMS AC definition of HUMS separates the health and monitoring systems as follows  
[6 and 7]:  
 
• Health Monitoring System.  Equipment, techniques, and/or procedures by which selected 

incipient failure or degradation can be determined. 
 
• Usage Monitoring System.  Equipment, techniques, and/or procedures by which selected 

aspects of service history can be determined. 
 
Although the general role of HUMS is widely accepted, little consensus exists on what exactly 
constitutes a HUMS.  References 6 and 7 require that a HUMS consist of a variety of sensors 
and data acquisition systems onboard the rotorcraft or on a ground station (or a combination of 
both).  Other texts only require the HUMS to contain the ground-based processing system.  
References 5 and 7 provide detailed descriptions of the HUMS concept and specific 
implementations of the concept.  Because of this lack of consensus, this report’s view of a 
HUMS needs to be stated.  For the purpose of this report, a HUMS is a system which includes 
the following:  
 
• Avionics equipment and data. 
• Associated ground equipment and data. 
 
A typical high-level architecture diagram of a HUMS is shown in figure 1. 
 

 
FIGURE 1.  TOP-LEVEL ARCHITECTURE OF HUMS [8] 

 
The HUMS can be thought of as three distinct parts, as depicted in figure 1.  The aircraft 
contains a large number of onboard sensors that feed data to the onboard processor(s).  The 
processor(s) then transmit this data through a channel, such as the Aircraft Communication 
Addressing and Reporting System (ACARS) to the ground stations.  The ACARS channel may 
also have some data storage with the actual data transfer to ground stations occurring offline at a 
later stage.  The ground stations receive data and store it for subsequent inspection and use.   
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To ensure that data integrity is maintained, one must investigate the safety and security issues in 
the HUMS.  Figure 1 shows that data can be compromised at two points, during transmission 
through the ACARS and during storage in the databases on the ground.  Discussions about these 
two areas of vulnerability follow. 
 
The ACARS is the data link used by most commercial aircrafts today for two-way 
communication between the aircraft and ground control.  It transmits data in text format over 
available radio frequency channels.  Anyone can intercept these transmissions and gain 
information such as aircraft type, condition, position, projected track, cargo content, and 
operational details [9] from the transmission.  There are three primary concerns with using such 
an unsecured network [10]:  
 
• Privacy concerns.  Anyone within range and having a very high frequency (VHF) or a 

high-frequency (HF) device can intercept ACARS signals.  This raises an issue of 
privacy of the health and usage signals transmitted from the aircraft to the ground 
stations.   

 
• Authenticity.  Assurance cannot be obtained that the transmission is coming from the 

aircraft/authorized ground station.  That is, the origin of the message cannot be 
guaranteed. 

 
• Data Integrity.  The integrity of the data during transmission cannot be guaranteed.  
 
However, other nonsecurity related concerns exist as well: 
 
• Saturation of radio frequencies.  Since only a limited bandwidth is available with an ever-

increasing number of flights, the number of new frequencies that can be allocated is very 
limited. 

 
• Decrease in quality of data transmission.  Because of the exponential increase in flight 

demands, the available bandwidth is continually shrinking, resulting in poor quality of 
data transmissions to and from ground control staff. 

 
The ground-based processing systems are points where the data is vulnerable as well.  The 
primary concerns and some techniques for consideration for data integrity during storage are: 
 
• Access security.  Only authorized personnel should be able to access the HUMS data.  

Sophisticated schemes (such as firewalls and encryption) need to be considered. 
 

• Authentication and access control.  Simple identification/password mechanisms do not 
provide the level of security desired.  Modern techniques such as digital signatures 
should be adopted.  Also, different users should be assigned different privilege levels to 
prevent malicious/involuntary corruption of data by authorized users. 
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• Intrusion detection.  Intrusion detection techniques should be adopted to detect patterns 
of intrusive behavior (such as denial-of-service (DoS) attacks) and take the necessary 
corrective action. 
 

• Information verification and accountability.  Before the data can be used, it should be 
ensured that data has not been modified maliciously or due to other considerations such 
as noise bursts, power surges, and so on.  Techniques such as checksum calculation, 
cyclic redundancy check and message authentication codes should be investigated.  The 
use of audit trails should also be considered as a vehicle to maintain accountability.  An 
audit trail is a series of records of events that take place in a system.  The events may be 
related to the OS, application programs, or users of the system.  An independent 
examination of these records can ensure compliance with established controls, policy, 
and operational procedures [11].  Audit trails thus enable a user to verify the activity of 
an information system and can help trace violations of security policies back to 
individuals.  

 
4.  OVERVIEW OF AVAILABLE GUIDANCE RELATING TO COTS AND GROUND-
BASED SYSTEMS. 

4.1  COVERAGE OF COTS IN DO-278. 

The Federal Aviation Administration (FAA) provides guidance to developers of airborne 
software systems so that those systems meet the regulations and are safe and execute as expected 
when integrated into a new and complete system.  The implementation phase of airborne 
software development is typically manifested by tight control of the entire development effort.  
Most aspects of the development of a software system (design, configuration control, quality 
assurance, life cycle management, etc.) are under the control of the developer.  Therefore, the 
developer of a new airborne system, and the FAA, can have confidence that if the guidelines are 
followed during the development of the new system, then it will perform its intended 
functionality with a level of assurance that complies with airworthiness requirements.  The 
software assurance guidelines are published as RTCA DO-178B. 
 
In 2002, RTCA Inc. published guidelines for developers of ground-based systems.  The ground-
based systems are often CNS/ATM systems and typically include COTS software components.  
These guidelines are published as DO-278, Guidelines for Communication, Navigation, 
Surveillance, and Air Traffic Management (CNS/ATM) Systems Software Integrity Assurance 
[1].  DO-278 is based on DO-178B, and for software that is being written line by line, the 
guidance is very similar to DO-178B.  DO-278 also addresses the incorporation of COTS 
software components, and Section 4 of DO-278 is devoted mainly to software development with 
COTS software components. 
 
Section 4 of DO-278 specifically addresses the use of COTS software and addresses four 
processes (planning, acquisition, verification, and configuration management) that must be 
considered when COTS software is used.  The extensive discussion of COTS software is new to 
DO-278 and was not included in DO-178B.  Section 3 of DO-278 contains ten tables of 
objectives derived from ten tables of objectives in DO-178B.  Some of the objectives in these ten 
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tables are COTS-related.  The COTS-specific objectives in Section 4 of DO-278 are an addition 
to, rather than a replacement of, the objectives in section 3. 
 
This project analyzes all of the DO-278 COTS-related objectives from the perspective of a 
representative COTS software component in a representative ground-based system (see section 6 
of this report). 
 
4.2  THE FAA GROUND-BASED, COTS-RELATED PROCESS. 

Many analyses are needed for an effective assessment of a ground-based system.  Some of these 
include Operational Safety Assessment, Comparative Safety Assessment, Preliminary Hazard 
Analysis, Subsystem Hazard Analysis, System Hazard Analysis, Operating and Support Hazard 
Analysis, Test Safety Analysis, System Safety Program Plan, and a safety assessment.  Some of 
these analyses and documents are used to accommodate FAA Order 8040.4, which states that the 
FAA should use a formal, disciplined, and documented decision-making process to address 
safety risks in relation to high consequence decisions impacting the complete product life cycle.  
The products resulting from this order are System Safety Handbook [12] and System Safety 
Management Program [13].  Precise definition of the assessment process of a ground-based 
system at this time is difficult because some of the acquisition process and guidelines are still 
undergoing change at this time with the National Airspace System (NAS) Modernization 
Program being the driving force. 
 
The FAA System Safety Handbook for ground-based systems defines system safety as “aiming 
to optimize safety by the identification of safety-related risks, eliminating or controlling them by 
design and/or procedures, based on acceptable system safety precedence” [12].  System safety is 
risk management.  At one end of the spectrum, it is not acceptable to have air transport systems 
that would generally be considered dangerous (catastrophic failures occurring at frequent 
intervals).  At the other end of the spectrum, it is not practical or cost-effective to build systems 
that are 100% reliable (no failures at all, not even very minor failures at very infrequent 
intervals).  Therefore, practicality and cost effectiveness lie in the middle of the spectrum, 
balancing the likelihood that a failure will occur, with the consequences if that failure actually 
does occur.  Consequently, in reference 14, Stroup, et al. have proposed a Common Risk Index, 
which is a matrix that can be used to determine a qualitative measurement (high, medium, or 
low) of potential system risk by combining the severity of consequences with the likelihood of 
occurrence.  For example, a hazard whose likelihood is classified as extremely remote, and 
severity as catastrophic is classified as having a high risk.  The matrix can then be mapped onto 
the assurance levels specified in DO-278, thereby helping developers in defining an effective 
risk mitigation strategy.  Section 5.3 of this report will describe how the likelihood and severity 
information obtained from the mapping between this matrix and assurance levels of DO-278 
software can be used in the generation of a risk mitigation strategy.  The matrix in figure 2 
illustrates the proposed Common Risk Index.  The definitions of likelihood and severity terms 
are given in tables 1 and 2. 
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FIGURE 2.  PROPOSED COMMON RISK INDEX [13] 

 
TABLE 1.  LIKELIHOOD DEFINITIONS [13] 

Likelihood Definitions 
Probable Qualitative:  Anticipated to occur one or more times during the 

entire system/operational life of an item. 
Quantitative:  Probability of occurrence per operational hour is 
equal to or greater than 1 x 10-5

Remote Qualitative:  Unlikely to occur to each item during its total life.  
May occur several times in the life of an entire system or fleet. 
Quantitative:  Probability of occurrence per operational hour is less 
than 1 x 10-5, but greater than 1 x 10-7

Extremely remote Qualitative:  Not anticipated to occur to each item during its total 
life.  May occur a few times in the life of an entire system or fleet. 
Quantitative:  Probability of occurrence per operational hour is less 
than 1 x 10-7 but greater than 1 x 10-9

Extremely improbable Qualitative:  So unlikely that it is not anticipated to occur during 
the entire operational life of an entire system or fleet. 
Quantitative:  Probability of occurrence per operational hour is less 
than 1 x 10-9

 

 11



 

TABLE 2.  SEVERITY DEFINITIONS 

Severity Definitions 
Catastrophic Safety:  Unacceptable results in fatalities and/or system loss. 

Security:  Loss of mission capability for extended period.   

Hazardous Safety:  Large reduction in safety margin or functional capability. 
Security:  Consistent severe impairment of mission capability.   

Major Safety:  Significant reduction in safety margin or functional capability. 
Security:  Noticeable impact on security. 

Minor Safety:  Slight reduction in safety margin or functional capability. 
Security:  No noticeable impact. 

No Effect Safety:  No effect on safety. 
Security:  No effect on security. 

 
Section 5.3 investigates how the above matrix can be used in developing an effective risk 
mitigation strategy. 
 
4.3  AIRBORNE SOFTWARE ASSURANCE LEVELS. 

All airborne software could potentially have an impact on safety.  Hence, it is subject to 
certification requirements as documented in Title 14 Code of Federal Regulations (CFR) [15].  
DO-178B defines a set of objectives to establish assurance that airborne software has the 
integrity needed for use in safety-related applications [2].  DO-178B is implemented by AC 20-
115B.  AC 20-115B considers DO-178B to be a means, but not the only means, to secure FAA 
approval of digital computer software.  The guidance of DO-178B is provided in the form of 
objectives for life cycle processes (this is defined according to software levels A through E), 
activities to be performed to achieve these objectives, and evidence indicating that these 
objectives have been met [16].  DO-178B acts as a guideline for determining that an acceptable 
level of confidence is present in the software aspects of airborne systems (in accordance with 
FAA airworthiness requirements).  The primary part of the DO-178B definition of the different 
software level is as follows [1]: 
 
• Level A.  Software that could cause or contribute to the failure of the system resulting in 

a catastrophic failure condition. 

• Level B.  Software that could cause or contribute to the system resulting in a hazardous 
or severe failure condition. 

• Level C.  Software that could cause or contribute to the system resulting in a major 
failure condition. 

• Level D.  Software that could cause or contribute to the system resulting in a minor 
failure condition. 

• Level E.  Software that could cause or contribute to the system resulting in no effect on 
the system. 
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4.4  NONAIRBORNE SOFTWARE ASSURANCE LEVELS. 

The levels in DO-278 are based on and relevant to DO-178B.  In DO-278, these levels are called 
assurance levels and, when applied to a non-airborne-based system, are represented by the 
following [2]: 
 
• Assurance Level 1 (AL1).  Software that could cause or contribute to the failure of the 

ground-based system resulting in a catastrophic failure condition.  Equivalent to DO-
178B Level A (as mentioned in section 4.3 of this report). 

• Assurance Level 2 (AL2).  Software that could cause or contribute to the failure of the 
ground-based system resulting in a hazardous or severe failure condition.  Equivalent to 
DO-178B Level B (as mentioned in section 4.3 of this report). 

• Assurance Level 3 (AL3).  Software that could cause or contribute to the failure of the 
ground-based system resulting in a major failure condition.  Equivalent to DO-178B 
Level C (as mentioned in section 4.3 of this report). 

• Assurance Level 4 (AL4).  This level accounts for certain CNS/ATM (ground-based) 
systems where AL3 is too stringent and AL5 is too lenient.  There is no DO-178B 
equivalent for this assurance level. 

• Assurance Level 5 (AL5).  Software that could cause or contribute to the failure of the 
ground-based system resulting in a minor failure condition.  Equivalent to DO-178B 
Level D (as mentioned in section 4.3 of this report). 

• Assurance Level 6 (AL6).  Software that could cause or contribute to the failure of the 
ground-based system resulting in no effect on the system.  Equivalent to DO-178B Level 
E (as mentioned in section 4.3 of this report). 

The DO-278 assurance levels are correlated to risk, as illustrated by an enhanced Common Risk 
Index in figure 3. 
 
The assigned assurance levels will depend on the function to be performed by the software and 
the impact of that function’s failure.  The specific process applied to the software will vary, 
depending on whether it is a COTS component or not.   
 

 13



 

AL 1 AL 2

AL 5 AL 6

AL 3 AL 4

High Risk

Low Risk

Medium
Risk

AL 2

AL 3

AL 6

AL 5

AL 4

AL 3

AL 4

AL 6

AL 5

AL 4

AL 4

AL 5

AL 6

AL 6

AL 5

AL 1

AL 2

AL 6

AL 3

Catastrophic

Hazardous

No Safety
Effect

Minor

Major

Probable

Remote Extremely
Remote

Extremely
Improbable

Likelihood

Se
ve

rit
y

AL 5

 
 

FIGURE 3.  ENHANCED COMMON RISK INDEX [17] 
 
4.5  CONSIDERATIONS OF THE HUMS ACs. 

This section will review the current guidance listed in the Rotorcraft HUMS ACs’ guidance 
material found in AC-27-1B Change 1 and AC-29-2C Change 1 for certifying HUMS ground-
based systems that contain COTS components.  The specific guidance of concern is found in 
Chapter 3 and Miscellaneous Guidance Section 15 (MG 15) of the HUMS ACs.  This section 
will also consider other potential guidance such as DO-178B and DO-278B. 
 
4.5.1  Background of HUMS. 

Health and usage monitoring has become a focal point in the helicopter domain.  Anticipated 
benefits include improved aircraft safety, increased availability and reliability, rapid 
determination of aircraft status, reduced overhaul and repair costs, and reduced scheduled 
component removal [18].  Many helicopter parts are dynamically loaded and are subject to 
develop fatigue cracks.  As a result, many of these parts are life-limited and are assigned a safe-
life limit in flight hours based on Miner’s theory of linear damage rule.  The process is to 
determine the aircraft’s usage or flight maneuvers (flight regimes), the frequency of those 
maneuvers, or the percent usage of that regime in a particular time frame.  This information is 
combined with material strength characteristics and part-testing results.  These loads are then 
used to establish an acceptable calculated retirement time for these parts [19].  The development 
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of a HUMS is rather unique in that the application software, perhaps level A, that is developed 
under DO-178B could be integrated with COTS software that may require a level D (or even 
higher) software assurance level, depending on the functional hazard assessment (FHA). 
 
Recent efforts have explored substituting the assumed worst-case usage with the actual measured 
usage to calculate retirement times.  This would permit safe part-life to be extended if the actual 
measured usage is less than then assumed usage.  It would also permit early removal of parts to 
maintain safety margins if the actual usage was more severe than assumed.  In reference 19, a 
design assessment is carried out for an application taking such an approach.  The application 
under study in reference 19 was a Helicopter Structural Usage Monitor.  The usage monitoring 
effort acquires helicopter sensor data, which is used to determine the aircraft’s flight regime.  
The regimes are calculated in real time once per second and stored in a data file that is used on 
landing to calculate a damage fraction for the part.  This data is packed and sealed with a cyclic 
redundancy check (CRC) algorithm.  The damage data is then moved to a ground-based 
computer [19]. 
 
A business case point of view in the HUMS domain is presented in reference 8, but it is cited 
that in June 1999, at the time the business case was developed, the HUMS ACs (AC 27-1B 
Change 1 and AC 29-2C Change 1) were in draft form, with the intent to provide specific 
guidance for FAA approval of functions implemented on a PC-based ground station.  Because of 
the guidance being in draft form, several HUMS applications chose not to include COTS 
software as part of their HUMS solution.  As a result, there is little current data as to the 
effectiveness of the AC guidance related to COTS.  However, since the official release of the 
HUMS ACs guidance material, to date, no HUMS applications for rotorcraft have been approved 
for maintenance credits.  That is, the HUMS applications that were approved by the FAA for 
rotorcraft to date, do not replace the existing maintenance program requirements.  These HUMS 
applications have been approved on a no maintenance credit basis.  This means that maintenance 
actions are not predicated on the data collected and processed by the approved HUMS 
applications.   
 
4.5.2  The HUMS Advisory Circulars. 

Advisory circular material AC 27-1B and AC 29-1C for airworthiness approval of HUMS was 
developed by the Rotorcraft Health and Usage Monitoring System Advisory Guidance, which 
consists of the FAA, the Joint Aviation Authorities (JAA), the Aerospace Industries Association 
of America Inc. (AIA), and the Association Europeene des Constructeurs de Material 
Aerospatial [6 and 7]. 
 
The advisory circulars provide guidance to achieve airworthiness approval for three basic 
aspects to HUMS certification:   
 
• Rotorcraft HUMS installation 
• Credit validation  
• Instructions for Continued Airworthiness (ICA) 
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Certification of HUMS must address all three aspects.  These aspects are not independent of each 
other and have varying degrees of interaction among themselves.  Installation includes all the 
equipment needed for the end-to-end application that is associated with acquiring, storing, 
processing, and displaying the HUMS application data, including airborne and ground-based 
equipment.  Credit validation includes evidence of effectiveness for the developed algorithms, 
acceptance limits, trend-setting data, tests, etc., and for the demonstration methods employed.  
ICA includes the methods used to ensure continued airworthiness of those parts that could 
change with time or use. 
 
4.5.3  Commercial Off-The-Shelf Approaches in the HUMS ACs. 

AC 27-1B Change 1 and AC 29-2C Change 2 (referred to as HUMS ACs for the remainder of 
this report) have very specific terms when discussing the various approaches to using COTS in a 
HUMS.  The HUMS ACs explain the following terms: 
 
• COTS.  This term defines equipment, hardware, and software that is not qualified to 

aircraft standards.   

• Mitigating Action.  It is an autonomous and continuing compensating factor that may 
modify the level of qualification associated with certification of a HUMS application.  
Mitigating actions are often performed as part of continued airworthiness considerations 
and are also an integral part of the certification. 

• Independent Verification Means.  An independent process to verify the correct 
functionality of a HUMS application on a ground station that uses COTS.  The intent of 
independent verification is to gain some degree of confidence in the COTS operation 
reliability.  Note: This process may be discontinued when sufficient confidence in the 
application has been achieved. 

The COTS definition in the HUMS ACs is very different than traditional COTS definitions.  The 
HUMS ACs state that COTS can be any software or hardware that has not been developed to 
DO-178B (or DO-254) standards.  This definition means that for the FAA to approve a HUMS, 
the COTS software and hardware must both be developed and qualified to acceptable aircraft 
standards.  However, the group that developed the HUMS ACs recognized that many existing 
ground stations used COTS components, like PCs and commercial operating systems, to process 
maintenance data collected through traditional means (i.e., manual recording of component life 
usage by humans).  Hence, the developers of the HUMS ACs wanted to continue to allow this 
use of COTS components, but there needed to be some acceptable criteria that these COTS 
components needed to be evaluated against.  The HUMS ACs do not relieve the HUMS 
application software from having to comply with DO-178B, even if this software resides in 
ground-based COTS station.  An example of the HUMS application software is the software that 
is developed to recognize the various flight regimes and processes raw data to determine the 
extent of wear and tear on a specific aircraft part.  This HUMS application software may reside 
in the ground-based COTS station. 
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DO-178B defines COTS in a different way.  The DO-178B glossary defines COTS software as 
“Commercially available applications sold by vendors through public catalog listings” [1].  This 
definition states nothing about the pedigree of the COTS product relative to DO-178B.  In fact, if 
one were to have a commercially available product that has been developed to the guidance of 
DO-178B, then it would be COTS under DO-178B, but not under the HUMS ACs.  
Correspondingly, if one were to have an in-house developed software module not developed to 
DO-178B, then the HUMS ACs state it is COTS, but under DO-178B it would not be COTS 
because it was not commercially available. 

In the HUMS ACs, a mitigating action is very different from independent verification means 
(IVM), and they should not be confused.  Mitigating action can be viewed as a compensation 
factor applied to the HUMS, which can result in an allowance in the reduction of the required 
level of qualification for the HUMS hardware and software.  The compensating factor applied as 
a mitigating action is permanent.  The IVM addresses the need to independently verify the 
results of COTS software or hardware components that have not been developed to DO-178B (or 
DO-254 for complex electronic hardware).  The intent of the IVM process is to gain some degree 
of confidence in the operational reliability of the ground-based COTS station.  This process may 
be discontinued when sufficient confidence in the application has been achieved. 

4.5.3.1  The HUMS ACs Intent and Other Considerations. 

Like airborne systems, the HUMS system must determine its end-to-end criticality by 
performing a FHA, including the ground components.  From a hardware point of view, ground 
components can include not only a PC desktop, laptop, and server, but also subassembly 
components such as modems, Ethernet cards, or memory transfer media (such as memory sticks).  
On the software side, not only does the system under review need to consider the computing 
engine software (such as databases or spreadsheet software), but also the enabling software (such 
as communications driver software and the OS).  Any potential effect on the data must be 
considered in the FHA.  The HUMS ACs’ intent is to have the FHA identify all system 
components, including COTS components, and determine the component’s criticality level to 
find its corresponding software level.  Any COTS component performing such actions (i.e., that 
determines component life time) must come under the guidance of DO-178B or an acceptable 
alternative. 

Compliance to the determined FHA criticality level can be accomplished by qualification plus 
appropriate mitigating action.  The final level of equipment qualification may not only be the 
result of technical consideration, but also of other mitigating actions, which can result in a 
reduction of qualification levels for equipment.   

4.5.3.1.1  The HUMS ACs and Service History. 

The HUMS ACs further state that for COTS components, the IVM must be accompanied with 
satisfactory service history.  Recent service history findings have shown, however, that for 
higher criticality systems, service history may simply not be an appropriate or practical choice.  
Care must be taken when using service history since it is usually part of a system.  Any use of 
service history for a COTS component is typically an extrapolation of the system’s performance.  
This extrapolation must be justified [20].  Ferrell [20] reported at the FAA 2003 National 
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Software Conference that when trying to apply an effective service history argument to a 
component of a system, problematic data collection practices, problematic interpretations, and 
associated assumptions are moving targets.  Such problems provide a challenge to effectively 
quantifying and justifying the data used to support the service history case.   

Given Ferrell’s [20] findings with regards to the difficulty of establishing a sound service history 
base, at least for the higher criticality systems, the HUMS AC statement of “satisfactory service 
history” would be very difficult to argue for. 

Take, for example, the use of Miner’s Cumulative Damage theory.  Historically, the approach 
has been validated via service history.  With the HUMS proposition of recalculating Miner’s 
laws using data from actual usage, an effective database of service history is lacking for 
validation of any new directed action with regards to the part’s continued performance ability. 

4.5.3.1.2  The Required Guidance Objectives for Air- and Ground-Based Software. 

The service history discussion above is one of several related to the state of accepting COTS 
components.  The more important issue or question to debate is, given that DO-178B was 
developed for airborne systems, What are the safety attributes of COTS components that are now 
ground-based? 

DO-178B requires structural coverage to identify any code not exercised through tests (so that 
any potential unintended functionality can be identified and addressed).  DO-248B, section 4.2, 
provides a glimpse of the source of this requirement back to 14 CFR.  14 CFR 25.1309, Subpart 
F – Equipment, states that the equipment, systems, and installations “must be designed to ensure 
that they perform their intended function under any foreseeable operating conditions.”  It has 
been observed that the requirement for structural coverage on ground-based systems may 
financially preclude the use of COTS.  Yet these COTS components may provide many benefits.  
Perhaps a reassessment of the structural coverage requirements for ground-based systems should 
be considered. 

In June 2002, the CAST completed a position on an Automatic Code Generation (ACG) Tools 
[21].  The CAST paper recognizes that halts during execution, overflows, variations in time 
response, hardware and software incompatibilities, hardware failures, unbounded recursive 
algorithms, bad stack usage, resource contention, task conflicts, bad interaction with other 
systems, etc., are examples of issues that may jeopardize flight safety if they appear in aviation 
software.  However, these types of errors may not have any influence on the flight safety if they 
occurred within a non-airborne-automated, code-generation tool. 

The CAST paper continues to modify the basis of compliance for such a tool by considering two 
entities of many ACGs: 

• Entity 1.  The library of elementary symbols (e.g., code primitives or basic functions) that 
contain basic symbols that contain the source code associated with implementing the 
function of each elementary symbol. 
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• Entity 2.  The architect (e.g., tool logic and program constructor) that reads the software 
specification and selects the association to the elementary symbol and may insert the 
corresponding source code for each selected symbol. 

In the CAST paper, each entity has different applications of DO-178B-related guidance.  A 
similar approach could be taken for software components in a HUMS.  Similarly, two entities 
should be considered for HUMS ground-based COTS components: (1) COTS components not 
directly related to the manifestation of vehicle part action (discussed in the following section) 
and (2) COTS components directly related to such action (discussed in following section).  For 
example, a COTS Visual Basic (VB) program written in an Excel spreadsheet that implements 
vehicle part action algorithms should have a different scope of verification than a COTS OS. 
 
4.5.3.1.3  Commercial Off-The-Shelf Not Related to Vehicle Part Action. 

Many COTS software components exist that do not have part-life, decision-making authority.  
Examples are OSs and communication software.  Certainly, this class of COTS software is 
simply enabling software that permits the HUMS data to be operated on by other software.  
Section 6 provides a brief look at the objectives of DO-178B to determine which are pertinent.   
 
4.5.3.1.4  Commercial Off-The-Shelf Directly Related to Vehicle Part Action. 

A focus for ground-based COTS components in a HUMS is correctness and accuracy for the 
predicted vehicle part action.  Compiler libraries, database software, and other computationally 
intensive COTS software must have many more applicable DO-178B objectives than not-
directly-related COTS components.  Arguably, one could state that all objectives must be applied 
according to a criticality level as determined by the FHA.  But, as noted with the publication of 
DO-278, not all ground-based systems align well with the objectives for assurance levels.  
Hence, a new assurance level was created (AL4). 
 
In fact, in many areas of ground-based software operations, the accountability of these objectives 
possibly should be on a case-by-case basis.  A preferred method of determining the applicability 
of the DO-178B or DO-278 objectives may be to perform a detailed analysis of each system 
component for all the objectives of these guidance documents and provide a rationale for why or 
why not an objective needs to be met.  A deeper research investigation into this technique is 
performed later in this document on two components of the demonstration portion of this study 
(see section 6). 
 
4.5.3.1.5  Independent Verification Means. 

Multiple-version redundancy has been offered in the HUMS ACs as a means for independent 
verification of ground-based COTS hardware and software equipment.  The use of multiple 
versions for fault tolerance has been discussed in the past.  Leveson [22] states that multiple-
version redundancy has been shown to have no statistical basis and cites six separate sources 
supporting this claim.  The issue of independence and redundancy of software needs more 
investigation. 
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4.5.3.2  Alternate Approaches for Acceptance of COTS Software. 

Certainly, the guidance in DO-178B is a recognized means of compliance.  DO-278, discussed 
elsewhere in this document, provides additional guidance recommendations with respect to 
COTS software.  DO-278 also has specific guidance on COTS that goes beyond the scope of 
DO-178B. 
 
DO-248B attempts to clarify portions of DO-178B including several discussions on COTS 
acceptability, but provides no new or additional guidance material beyond DO-178B.  DO-178B 
is highly process-based, yet a trend appears to be leaning toward more product-based analysis.  
When one considers permitting modular certification or approval of components as Rushby 
suggests in reference 23, alternate approval methods will be needed.  A variety of approaches 
can aid in the determination of the acceptability of a COTS component.  An area of future study 
for this research would be to assess alternate means, as listed below for each objective, and 
determine the viability of making such an analysis process part of the suggested guidance of 
DO-178B or DO-278. 
 
• Wrappers 
• Calculation Reasonable Checks 
• Data Input Reasonable Checks 
• Full Up Part-life Models 
• Partitioning 
• Isolation 
• Product Service Experience 
• Prior Assurance 
• Process Recognition 
• Reverse Engineering 
• Restriction of Functionality 
• Audits 
• Inspections 
• Formal Methods  
• Fault Detection and Accommodation 
• Monitoring—Performance, Safety, Activity 
• Fail-safe Architectures 
• Adaptive Part Model Predictions—recent confidence index  
 
5.  CURRENT AND EMERGING INDUSTRY APPROACHES TO SECURITY AND 
SAFETY. 

This section considers some of the current security and safety trends for COTS software and 
their relationship to HUMS. 
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5.1  SECURITY APPROACHES. 

System security is closely related to system safety; both deal with threats or risks to the system 
and both involve protection against losses, although the types of losses involved may be 
different.  Faults inherent to the system can be removed over a period of time in system testing, 
but system security is a factor that needs to be considered even when the system is in a 
functional stage, as negligence in security may compromise system safety. 
 
Security focuses on malicious actions of outside or inside attackers.  System security is different 
from safety in that it protects the system from the deliberate attacks of malicious attackers, while 
system safety deals with protecting the system in case of faults or failures that are unintentional 
(i.e., not deliberate).  The primary emphasis in security has been on preventing unauthorized 
access to classified information.  However, it also includes unauthorized disclosure, 
modification, and withholding of data. 
 
The following sections introduce various security mechanisms (i.e., cryptography, access 
security, intrusion detection, information and data protection) and consider their potential use in 
the HUMS context.   
 
5.1.1  Cryptography. 

Cryptography is the art of creating and using cryptosystems.  A cryptosystem or cipher system is 
a method of disguising messages so that only certain people (the intended recipients of the 
message) can see through the disguise.  The original message that is disguised is called plaintext.  
The disguised message is called ciphertext.  Encryption refers to the method used to convert 
plaintext into ciphertext.  Decryption refers to any procedure to convert ciphertext into plaintext.  
A cryptosystem is usually a whole collection of algorithms.  Cryptosystems come in two 
different versions: secret key cryptosystems and public key cryptosystems.  This section 
describes the basics of cryptography and the applications of cryptography that are relevant to the 
HUMS. 
 
5.1.1.1  Secret Key Cryptography. 

Secret key cryptography is sometimes referred to as symmetric cryptography [24].  In this 
traditional form of cryptography, the same key is used for encryption and decryption, as shown 
in figure 4.  Message Authentication Codes (MAC) use secret keys to provide authentication. 
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Plaintext Ciphertext Original
Plaintext

 
FIGURE 4.  SYMMETRIC KEY CRYPTOSYSTEM 
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Secret key cryptography has certain advantages over public key cryptography, its higher speed 
being one.  However, secret key cryptography requires that the sender and receiver of a message 
agree on a secret key, and this is often a difficult task due to eavesdropping. 
 
The most common techniques in secret key cryptography are block ciphers, stream ciphers, and 
MACs.  Each is discussed below. 
 
5.1.1.1.1  Block Ciphers. 

A block cipher is a type of secret key encryption algorithm that converts a block of unencrypted 
data of fixed length into a block of encrypted data of the same length.  A secret key is used for 
this transformation.  Decryption is performed using the same secret key.  The fixed length of 
unencrypted data (plaintext) and encrypted data (ciphertext) is termed the block size. 
 
5.1.1.1.2  Stream Ciphers. 

A stream cipher is a type of secret key encryption algorithm.  As opposed to block ciphers that 
operate on blocks of plaintext, stream ciphers transform smaller units of unencrypted data 
(generally bits into the ciphertext). 
 
A stream cipher generates a key stream (i.e., a sequence of bits used as a key).  Encryption 
generally involves combing the key stream and the plaintext, which is quite commonly a bitwise 
XOR operation. 
 
5.1.1.1.3  Message Authentication Code. 

A MAC involves the use of an authentication tag generated by applying a secret key and an 
authentication scheme to a plaintext message.  Unlike digital signatures, MACs cannot be 
verified by receivers that do not possess the secret key used to create the MAC.  As shown in 
figure 5, a sender uses G (key, message) to generate a tag.  This tag is appended to the message 
and is transmitted.  If an attacker succeeds in intercepting the message, he or she modifies the 
message and tag.  The modified message and tag then reach the receiver, who uses G (message′, 
key) to determine whether or not the contents have been modified.   
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FIGURE 5.  MESSAGE AUTHENTICATION CODE 
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5.1.1.2  Public Key Cryptosystems. 

In secret key cryptography, the sender and receiver of a message use the same secret key; the 
sender uses the secret key to encrypt the message, and the receiver uses the same secret key to 
decrypt the message.   
 
A key exchange scheme is required for the sender and receiver to agree on the same key.  If an 
eavesdropper is able to intercept the key during exchange, all transmissions encrypted using this 
key will be prone to passive attacks on the confidentiality of the data. 
 
To deal with key management issues, Whitfield Diffie and Martin Hellman introduced the 
concept of public key cryptography in 1976.  Public key cryptosystems have two primary uses, 
encryption and digital signatures.  The system involves the private key and the public key.  
Private keys are kept secret while public keys may be disclosed to anyone.  Public key 
cryptography can be used not only for privacy (encryption), but also for authentication (digital 
signatures) and other various techniques.  Figure 6 shows a public key cryptosystem that uses 
different keys for encryption and decryption. 
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FIGURE 6.  PUBLIC KEY CRYPTOSYSTEM 

 
Public and private keys are linked mathematically.  Since the public key is not kept secret, an 
attacker may try to derive the secret private key using the public key.  However, in public key 
cryptosystems, the task of deriving the private key from the public key is made difficult.  For 
instance, some public key cryptosystems like RSA (Rivest, Shamir, Adelman) are designed such 
that deriving the private key from the public key requires the attacker to factor a large number.  
This derivation is computationally infeasible.  Encryption and digital signatures are further 
discussed below. 
 
5.1.1.2.1  Encryption. 

Assume A and B to be two entities that wish to communicate.  Suppose A wishes to send a 
message.  A looks up B’s public key, encrypts the plaintext with B’s public key, and sends the 
ciphertext to B.  Confidentiality is achieved, as only B, who has the private key, can decrypt the 
message. 
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5.1.1.2.2  Digital Signatures. 

Again, assume A and B to be two entities that wish to communicate.  To sign a message, A does a 
computation using its private key and the message itself; i.e., A encrypts the message using its 
private key.  The encrypted output is called a digital signature and is attached to the message.  To 
verify the signature, B does a computation that involves the message, A’s signature, and A’s 
public key.  Using a simple mathematical relation, B decrypts the digital signature using A’s 
public key.  If the decrypted result matches the original message, then A’s signature is verified to 
be genuine.  Otherwise, the signature is considered fraudulent, or the message may have been 
modified. 
 
5.1.2  Cryptography in the HUMS Context. 

Cryptography should be used in HUMS for achieving security objectives.  Different forms of 
encryption techniques can be used to make ACARS secure, but this requires enhancements to the 
existing ACARS infrastructure. 
 
If cryptography is used, the secure ACARS runs as an application; hence, it is independent of 
underlying hardware.  The secure ACARS application runs over the existing infrastructure, 
which interprets the secure transmissions as shown in figure 7.  Thus, the secure transmission is 
invisible to the user. 
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FIGURE 7.  SECURE ACARS 
 
The cryptography protocol works as follows, if integrated into HUMS (as shown in figure 7): 
 
• Before data transfer can begin, a secure path must be established.  That is, both sender 

and receiver must be unambiguously identified to each other.  This is called the 
Handshake phase.  The airborne system sends its identity, time of transfer, intended 
ground station, digital signature, etc., in a message to the ground station.   
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• The ground station, in turn, responds with another message comprised of the identity of 
the ground station and a random number used to generate a session key.  This message is 
encrypted and can be decrypted only by the private key of the airborne system. 

 
• Using this random number, a session key is established, which is then used to encrypt all 

data transfers.  In this way, the system uses a combination of symmetric (private) as well 
as asymmetric (public) cryptographic techniques to ensure secure data delivery. 

 
• If a breach is detected at any time (for example, if checksum validations on transmitted 

data fail or if authentication fails), either party can terminate the session, and 
transmission can revert back to voice-based communication.  Once the failure is resolved, 
secure ACARS operations may resume. 

 
5.1.3  Access Security. 

Every system must support the ability to protect data and system resources from intrusions, 
modifications, theft, and unauthorized disclosures.  As data in any database is related by 
semantic relationships, damage in a database environment can affect the entire information 
system.   
 
Categories of security breaches include [25]: 
 
• Unauthorized data observation.  Unauthorized data observation results in a disclosure of 

information to users not entitled to gain access to such information. 
 
• Incorrect data modification.  Incorrect modifications of data, either intentional or 

unintentional, result in an inconsistent database state. 
 
• Data unavailability.  When data is unavailable, information crucial for proper functioning 

may not be readily accessible when needed.   
 
Therefore, a complete solution to the data security problem requires addressing issues of secrecy, 
integrity, and availability. 
 
Authentication deals with the problem, Who is the user?  Access control deals with the problem, 
What can the user do to a certain resource?  Authentication and access control together form an 
authorization mechanism; hence, the two techniques are discussed together below.  For HUMS, 
all the mechanisms for authentication and access control can be deployed at the gateway, which 
separates the HUMS database subsystem from other subsystems. 
 
5.1.3.1  Authentication. 

An authentication mechanism attempts to provide assurance of the claimed identity of an entity.  
Whenever any entity tries to access HUMS, that entity should first be authenticated.  Only if the 
entity can be authenticated properly should it be allowed to access and modify the data. 
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Authentication methods generally rely on one or a combination of the following principles: 
 
• Something known:  e.g., password, pin, mother’s maiden name. 

• Something possessed:  e.g., smart card, key, ID badge. 

• Some immutable characteristics: e.g., fingerprints, voice scan, retina scan (biometric 
identifier). 

In the case of HUMS, entities that require access to the database are: 
 
• Secure ACARS network.  It transfers airborne data from the aircraft to the ground-based 

gateways in a secure manner.  This data needs to be stored in the HUMS database 
without compromising data security and integrity. 

• Applications that require HUMS data for use and maintenance purposes.  The 
applications may access data over a secure/private network connection, a virtual/private 
network, or over an unsecured/public network (Internet). 

HUMS database subsystems can assume that the encrypted data it receives via the secure 
ACARS is authenticated.  But this encrypted data needs to be checked for its integrity, since it 
could be tampered with during transmission through the network. 
 
5.1.3.2  Access Control. 

Access control mechanisms ensure data secrecy.  Whenever an entity tries to access data, the 
access control mechanism checks the rights of the entity against a set of authorizations.  An 
authorization states which user can perform which action on which object.  Data integrity is 
jointly ensured by an access control mechanism and by semantic integrity constraints.  Whenever 
an entity tries to modify some data, the access control mechanism verifies that the user has the 
right to modify the data; the semantic integrity subsystem verifies that the updated data is 
semantically correct (i.e., the system is in a stable logical state).   
 
Access control mechanisms generally rely on authentication mechanisms and encryption 
techniques for proper functioning.  Access control policies can be broadly classified into two 
categories:  Discretionary Access Control and Mandatory Access Control [25].  Each is 
discussed below. 
 
5.1.3.2.1  Discretionary Access Control. 

The discretionary access control policy governs the access of entities to data on the basis of 
entities’ identity and authorization rules.  Such mechanisms are discretionary in that they allow 
entities to grant other entities authorization to access data.  An important aspect of discretionary 
access control is related to authorization administration policy, which refers to the function of  
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granting and revoking authorization.  Some common authorization administration policies are 
listed below [25]: 
 
• Centralized administration.  Some privileged users may grant or revoke authorizations. 
 
• Owner-based administration.  The creator of a data object issues grant or revoke 

operations.  Due to this characteristic, this category allows decentralized administration. 
 
• Joint-based administration.  Several users are jointly responsible for authorization 

administration. 
 
Authorization of each access hit depends exclusively on the existence or absence of an 
authorization rule, without taking into account the confidentiality level of the data or the level 
each entity can access.  OSs generally implement these policies. 
 
Thus, a high degree of flexibility characterizes discretionary access control policies.  However, 
these policies do not impose any control on how information is propagated and used after 
authorized users have accessed information. 
 
5.1.3.2.2  Mandatory Access Control. 

The mandatory access control policy classifies entities and data into different security levels.  
The main characteristic of mandatory access control policy is that an access is authorized if a 
certain relation exists between the entity security level and the security level of the object to be 
accessed.  Data has appropriate security levels, irrespective of the users who wish to access it.  
Multilevel database management systems can support mandatory access control through 
different security levels in the data and different accreditation levels for users. 
 
Mandatory policies are rigid compared to discretionary policies because they require a strict 
classification of entities and data objects into security levels.  However, they ensure a high 
degree of protection in that they prevent any illegal flow of information. 
 
5.1.3.3  Variations in Access Control Policies. 

Different variations of the above-mentioned access control policies exist that are suitable to 
different applications.  Examples of such variations are: 
 
• Negative authorization.  Explicit denials can be expressed as authorization rules. 
 
• Temporal duration of authorization.  Permissions can be specified for specific time 

intervals. 
 
• Role-based access control.  In this policy, access permissions are associated with roles, 

and users are made members of the roles.  The roles represent each functional group of 
the system; grouping in each one represents users with similar functions and  
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responsibilities.  Thus, operations that a user can perform are based on the user’s role.  
This policy facilitates administration and is a natural way to represent hierarchies in the 
system. 

 
5.1.3.4  Authentication and Access Control in HUMS. 

An authentication and access control module in HUMS should have the following characteristics 
[26]: 
 
• High-assurance security.  Applications should provide high confidence through strong 

security services for confidentiality, data integrity, user-based authentication, and 
nonrepudiation.  System assurance should be limited only by the underlying COTS 
platform and applications.  This implies that COTS components should be chosen such 
that from a security perspective, their limitations are within acceptable limits of the target 
HUMS application. 

 
• Secure submissions and retrieval.  Data must be protected while allowing authorized 

users to access and modify information. 
 
• High usability.  A uniform user interface should be used to increase user acceptance and 

efficiency while reducing the training costs of high-security solutions. 
 
• Scalability.  A secure solution must be extendable to meet ever-increasing throughput 

and storage requirements. 
 
• COTS products use.  Secure solutions should employ COTS-based hardware and 

software, where possible, to minimize redevelopment, testing, and support efforts, 
without compromising security. 

 
5.1.4  Access Control in the HUMS Context (An Example). 

A firewall is a set of mechanisms that can enforce a network security policy on communication 
traffic entering or leaving a network policy domain [27].  Current firewall technologies and low-
cost, powerful COTS hardware and software computing platforms lend themselves to a solution 
using standards-based cryptographic algorithms and mechanisms.  As discussed in the previous 
sections, this secure network architecture provides secure data access over trusted or untrusted 
networks and high-assurance access control in a highly usable, flexible, and scalable 
manner [26]. 
 
The architecture in figure 8 is an example of a HUMS that is built using a commercially 
available, application-level firewall and other COTS machines.  The systems, which use standard 
OSs, act as gateways between the users and the servers.  The firewall mediates access between 
multiple network domains with trusted HUMS servers.  Only administrative user logins are 
permitted on this trusted server domain.  Thus, the architecture provides strong protection for 
sensitive data by physically separating HUMS servers from other users and servers on the 
network. 
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FIGURE 8.  SECURE NETWORK ARCHITECTURE [25] 
 
Data flow transmitted over the secure ACARS network can be assumed to be authenticated.  
This encrypted data consists of actual data sent by onboard sensors and message digests 
computed on the actual data using standard algorithms.  The firewall allows data from the secure 
ACARS network to be passed to cryptographic gateways.  Data is checked for its integrity using 
message digests.  If the message digest computed by the cryptographic gateway is different from 
the message digest in the data, then the data is discarded.  Otherwise, the gateway forwards the 
data to the appropriate HUMS server. 
 
A protocol gateway, such as a web server, located on an untrusted network domain presents the 
user interface on client workstations.  The user completes a secure data submission or retrieval 
request and encrypts and digitally signs the request using cryptographic standard algorithms.  In 
addition to or instead of a digital signature, the user may provide other forms of authentication, 
such as biometrics. 
 
A firewall relays the data submission or retrieval request to the HUMS server within a trusted 
domain through cryptographic gateways.  When the request reaches the trusted domain, the 
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cryptographic gateway verifies the digital signature and/or biometric template and decrypts the 
transaction.  The architecture supports the Public Key Infrastructure mechanism. 
 
After successful authentication, the cryptographic gateway can check the requested action and its 
originator against its access control list (ACL) and can determine if the user is authorized to 
perform the requested action.  If the authentication fails, or if the user’s request cannot be 
authorized, the cryptographic gateway would reject the request immediately and log this rejected 
request for subsequent monitoring. 
 
Authenticated requests from authorized users are forwarded to HUMS servers for further 
processing.  The server sends the result of the request to the cryptographic gateway, where it is 
encrypted for the originating user, digitally signed, and relayed back to the originator. 
 
Network access to the trusted domain is strictly transaction-oriented and must be digitally signed 
by the individual user making the request.  The security policy for this architecture permits no 
direct network logins to HUMS servers (except for administrative access).  This policy is 
enforced by a firewall technology that mediates access between the different network domains, 
allowing only transaction-oriented communication addressed to the cryptographic gateway to 
pass through to trusted server domain.  Because administrative logins are also protected by 
strong authentication, the firewall policy can be used to control the perimeter of the trusted 
server domain. 
 
Authorizations are performed through the use of ACLs maintained on the cryptographic gateway 
located on a trusted server domain.  ACLs are files that maintain information on protected 
HUMS resources and the individual users who may access them.  Firewalls prevent direct 
connections to the machines on trusted domains.  Also, firewalls route all transactions to the 
cryptographic gateway to be verified and authorized against ACLs before being processed by the 
server.  Therefore, only the administrator can access ACLs; regular users cannot modify them. 
 
5.1.5  Intrusion Detection. 

An Intrusion Detection System (IDS) is defined as an application or process, which monitors an 
environment for the purpose of identifying activity that indicates system abuse, misuse, or 
malicious attack [28]. 
 
This section discusses popular approaches to IDSs and describes the role they may play in the 
security architecture used to protect HUMS. 
 
Systems are vulnerable to inside and outside attackers.  Inside attackers are users with access to 
the systems.  Outside attackers are malicious attackers who try to get through the security 
mechanisms and gain access to information and resources.  Attackers use several different tools 
and methods to break a system.  A good description of different types of attacks can be found in 
reference 29.  Several security mechanisms can be used to fortify the security of the HUMS, for 
example, firewalls and Virtual Private Network gateways.  However, weaknesses and bugs in 
OSs and network protocols are continually exploited by system attackers.  Thus, no system is 
unbreakable or 100 percent secure. 
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An IDS provides a second line of defense to aid the intrusion prevention techniques.  If an 
attacker is successful in breaking into the system, the IDS can possibly detect the attack and 
signal an alarm.  A good analogy would be home security systems.  Home security systems 
signal an alarm when an intruder breaks in and acts as a second line of defense in addition to the 
preventive techniques (e.g., locks on doors and windows). 
 
Because of their ability to detect attacks, IDSs are now an essential component of computer 
security.  Some IDSs can detect an attack in real time and can actually take some action to stop a 
particular attack from inflicting further damage.  Other IDSs can provide information about the 
attack that can be used to prevent those attacks from happening again.  Advanced IDSs can 
detect never-before-seen attacks, but the more typical IDS detects attacks that are previously 
known [30]. 
 
The following sections discuss the most popular approaches used in the design of IDSs. 
 
5.1.5.1  Signature-Based Approach. 

The signature-based approach to intrusion detection involves looking at an invariant sequence of 
events that match a known type of attack.  For example, a “Ping of Death” is a DoS attack.  This 
attack involves sending an oversized ping packet that causes the target machine to reboot.  A 
signature for this attack would have a rule: “A ping packet greater that 64 Kilobytes is an 
attack.”  Signatures can be created for the various types of attacks that are already known in a 
variety of ways (for example, hand translation of attack manifestations and automatic training 
and learning). 
 
However, the signature-based approach has problems detecting truly novel attacks.  In addition, 
false-alarm rates for these systems are very high because it is difficult to create signatures that 
successfully detect attacks while allowing normal traffic to flow through [31].  Finally, when 
new attacks are discovered, signatures must be created for the attacks and the system must be 
updated.   
 
5.1.5.2  Anomaly-Based Approach. 

Anomaly-based detectors have an advantage over signature-based detectors because they are 
able to detect novel attacks.  This approach to intrusion detection involves creating statistical 
models for the behavior of the system.  The IDS will send out an alarm whenever it observes an 
anomaly (that is, behavior that deviates from the normal behavior of the system). 
 
The anomaly-based approach involves an initial training phase in which the system creates a 
model of the user or network.  After this training phase, the IDS, upon observing behavior that 
deviates from the normal, generates an alarm. 
 
Anomalous behavior does not always mean that an attack is underway, so anomaly detection 
systems should be carefully tuned to avoid high false-alarm rates.  This requires that the activity 
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of the system or user be stable over a period of time and not overlap with the activities of an 
intruder [32]. 
 
A user with very regular habits will be easy to model; therefore, the behavior of an attacker will 
likely deviate significantly from the usual behavior and an attack will be detected.  However, a 
system administrator’s actions will vary considerably, and it will be more difficult to distinguish 
attacker from administrator.  Also, a hacker may slightly deviate from what is perceived as 
normal behavior by the intrusion detection system for a long period of time, thus staying 
unnoticed.  Another disadvantage is the large storage requirement for the statistical model that 
represents normal behavior. 
 
5.1.5.3  Specification-Based Approach. 

The specification-based approach to intrusion detection can detect new attacks that involve 
improper use of the system or application programs.  This approach involves specifying normal 
behavior for the system and application programs.  The audit records on a host are then 
examined to detect if there are any variations from normal behavior.  Specification-based IDSs 
can provide very low false-alarm rates and detect a wide range of attacks, including many forms 
of malicious code such as Trojan horses and other viruses.  These attacks exploit race conditions 
and take advantage of improper synchronization in distributed programs. 
 
However, this approach is difficult to apply, because security specifications must be written for 
all programs to be monitored.  Writing security specifications is difficult because system and 
application programs are constantly updated.  The specification-based approach is best suited to 
certain critical programs (system or user programs) that are considered prime targets of the 
system. 
 
5.1.5.4  Bottleneck Verification Approach. 

The bottleneck verification approach to intrusion detection can be applied when only a few ways 
to transition from a certain set of states to another set of states are possible.  The transition from 
user to superuser in a shell is one example.  Whenever a transition from a user to superuser state 
happens, a bottleneck verification-based system will check whether or not the superuser 
command was indeed used to change from user state to superuser state.  Thus, even if some 
novel method was used to carry out the transition, the attack will be detected.  The bottleneck 
verification scheme therefore has the capability to detect new attacks. 
 
5.1.5.5  Host-Based Approach. 

The host-based approach to intrusion detection is deployed on a host.  The OS on that host 
collects audit and log data, which is analyzed by the IDS to detect intrusions. 
 
In cooperation with the host OS, the IDS can also monitor the interaction of various running 
applications to detect attacks. 
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The disadvantage of this approach is an attack that allows the attacker to gain control of the 
targeted machine may allow the attacker to disable the operations of the IDS.  But the approach 
can help uncover attacks that do not create any externally observable behavior. 
 
5.1.5.6  Network-Based Approach. 

The network-based approach to intrusion detection looks at network traffic to detect attacks.  
The detection system in no way affects the performance of the protected hosts, and it allows 
simultaneous monitoring of a number of hosts.  However, the approach suffers from performance 
problems with increasing network speeds [28]. 
 
5.1.6  Intrusion Detection Within a HUMS Context. 

Of all the intrusion detection approaches mentioned above, there is no single best approach.  For 
the HUMS, a combination of these approaches should be used and tailored to the needs of the 
system. 
 
In selecting and deploying an IDS, certain selection criteria should be considered [33].  The 
following is a short summary of some selection criteria requirement categories: 
 
• Detection.  Detection requirements address various functional and security issues 

regarding detection of intrusions.   
 
• Response.  This set of requirements addresses various activities that are initiated when an 

intrusion is detected.  The requirements address the degree to which the IDS can respond 
to intrusion related information. 

 
• Deployment.  Various practical issues, such as installation, platform support, and 

interoperability, are encompassed in this set of requirements. 
 
Requirements in each category are associated with degrees of compliance.  The criteria could be 
used as a basis for selecting an IDS that matches the security requirements of the HUMS system. 
 
In addition to evaluating existing IDSs to determine which best fit the detection, response, and 
deployment criteria, an approach that incorporates anomaly detection and signature-based 
systems might best suit the security needs of the HUMS system.  The detection system would be 
able to detect known and novel attacks.  Host-based IDSs would be deployed at all the entities 
involved in the HUMS system, and network-based IDSs would be deployed at strategic network 
locations (i.e., gateway and access points).  The host-based system would monitor audit logs 
generated by the OS to detect malicious activity by looking for the presence of known signatures 
and aberrations from normal profiles.  The network-based IDS would look at network traffic for 
known and novel attacks. 
 
Specification-based intrusion detection approaches should be employed for prime targets in the 
HUMS.  Security specifications should be written and continuously updated to facilitate 
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specification-based detection.  Prime targets in HUMS include critical components of HUMS, 
which should be chosen based on hazard and vulnerability analysis.   
 
5.1.7  Information and Data Protection. 

This section describes information verification methods that can be used to ensure that the data 
has not been corrupted during storage.  Data stored in the HUMS database may be modified 
either accidentally or by malicious attackers.  Hash functions can verify correctness.  Audit trails 
can trace violations of security policies back to individuals. 
 
5.1.7.1  Hash Functions as Information Verification Methods. 

Hash functions act on some input to produce new output.  For example, in y = f (x), f () is a hash 
function that, on x as input, produces y as output.  One-way hash functions are a special class of 
hash functions with the following properties [24]: 
 
• Given x, it is easy to compute y. 
• Given y, it is hard to compute x, that is, computing x = f -1 (y) is difficult. 
• Given x, it is hard to find another x′ such that f (x) = f (x′) 
 
One-way hash functions are also called message digests, as they take the original message as 
input to produce output digest hash value.  All modern hash algorithms produce hash values of 
128 bits or higher.  Hash algorithms also have the property that even a slight change in the input 
string causes the hash value to change drastically.  This is called an avalanche effect.  Thus, even 
if a single bit is flipped in the input string, at least half of the bits in the hash value will flip as a 
result. 
 
Since it is computationally infeasible to produce a message that would hash to a given value or 
to find two messages that hash to the same value, the hash value of a message can serve as a 
cryptographic equivalent of the message.  This makes a one-way hash function a central notion 
in public key cryptography, where it can be used to ensure data integrity. 
 
Hash functions that do not use secret keys but are used for ensuring data integrity are called 
Modification Detection Codes (MDC).  Another class of hash functions, which use a private key 
and provide both data integrity and origin authentication, are called MACs. 
 
Examples of widely used MDC hash algorithms are Message Digest version 5 (MD5) and Secure 
Hash Algorithm (SHA).  MD5 produces 128-bit hash value, while SHA can produce hash value 
of length 160 bits [24]. 
 
5.1.7.2  Audit Trails. 

An audit trail is a series of records of events that take place in a system.  The events may be 
related to the OS, application programs, or users of the system.  Audit trails enable a user to 
identify and verify the activity of an information system. 
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Trusted systems must maintain audit trails of system activity to ensure that actions that violate 
the security policy of the system can be traced back to accountable individuals [34].  Even when 
a deliberate, malicious attack is not suspected, audit trails can be useful in restoring data integrity 
following unintentional mistakes or software failures. 
 
A monitoring system generates audit trails.  They have great importance in computer security for 
the following reasons: 
 
• Individual Accountability.  Audit trails can be used to detect insider attacks, which are 

malicious activities by authorized users of the system.  They can be very difficult to 
detect because the attacker has a legitimate way to get into the system.  Audit trails may 
deter inside attackers. 

 
• Reconstructing Events.  When a system is successfully attacked, it is a good idea to 

figure out exactly what happened.  This includes determining the state the system was in 
before ascertaining how attackers compromised security measures.  If it is not possible to 
determine who or what used the system, there is little chance of ascertaining what 
occurred to breach the security.  Without audit trails, the exact same vulnerability would 
stay open, without any improvement in the system to prevent future attacks.   

 
• Problem Monitoring.  Audit trails may also be used to monitor the system to detect any 

abnormal activities.  Disk failures and overuse of resources may be detected, for 
example. 

 
• Intrusion Detection.  IDSs identify attempts to penetrate a system and gain unauthorized 

access.  Audit trails can help in detecting system misuse and can serve as a database for 
the anomaly detection engine of an IDS [34]. 

 
If an audit trail is to aid in tracing back an event after the fact, it must continuously record many 
system events at a fine level of detail.  This results in a large volume of data, most of it useless in 
tracing attacks.  However, data must be generated and stored in the hope that, if an abnormal 
event takes place, the few critical records needed to trace the event will be present. 
 
A simple model of an auditing system is shown in figure 9 and consists of:  
 
• Audit Data Collector.  This is responsible for collecting the audit data. 
 
• Audit Data Analyzer.  This is responsible for analyzing the audit data.  The format to be 

used to transfer data from the collector to the analyzer is an ongoing research effort in 
academia.   
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Audit Data Collector 
(monitor operating system, user 

activities, and application programs)

Audit Data Analyzer 
(analyze data from collector) 

 
FIGURE 9.  MODEL OF AN AUDITING SYSTEM 

 
An audit trail should have a standard format, which helps overcome incompatibility and 
interoperability issues.  Exchange of audit data from audit sources on different systems and 
collaborative analysis of data in a distributed environment is greatly facilitated by a standard 
format.  Some of the proposed standards for the format of audit trails are Bishop's Standard 
Audit Trail Format, Normalized Audit Data Format, and Sun Solaris Common Audit Trail 
Interchange Format for UNIX®. 
 
The content of the audit trails also needs to be standardized.  Interoperability issues that arise 
from analyzing data from different sources, particularly in a distributed environment, can be 
solved by use of these standards.  Some of the proposed standards are Trusted Computer System 
Evaluation Criteria and Security Criteria for Distributed Systems. 
 
5.1.8  Data Integrity Assurance in HUMS Context. 

The following considers data integrity of a HUMS. 
 
In a HUMS, in which data is being transmitted over the ACARS network, all data to be 
transmitted is given as an input to the MDC hash algorithm.  The message digest for that data is 
then calculated and encrypted along with the actual data.  The whole encrypted message is sent 
over the network. 
 
At the other end, a cryptographic gateway in a trusted domain decrypts the entire message to get 
the actual data and message digest.  The gateway then computes the message digest on the actual 
data and verifies it with the message digest received over the network.  The MDC hash algorithm 
property ensures that even if a single bit of the message is altered, the gateway will get a 
message digest different from the message digest of the original message. 
 
Therefore, even if an intruder were able to alter the message, the gateway would detect it, and 
the message could be discarded.  Hence, the gateway can alert the monitoring system and take 
appropriate action, like asking for retransmission of the message. 
 
The same mechanism ensures data integrity for requests coming from users on an untrusted 
network and for responses to these requests by the HUMS server.  A cryptographic gateway 
checks the message digest for requests from the users.  Only if the message digest computed by 
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the gateway matches the message digest in the message is the request considered further; 
otherwise, it is blocked.  Also, when sending the response back to the user, the gateway 
calculates and appends the message digest to the response before encrypting it.  The user can 
ensure that data integrity is maintained on his side by checking this message digest. 

Audit trails should be used to log all activities, including source and number of messages being 
transmitted over the ACARS, number of retransmissions in case of failures, client requests, 
database read/write requests, and so on.  This will aid in analyzing patterns of access to the 
HUMS data in case of a security breach and also during general maintenance activities. 

5.2  SAFETY APPROACHES AND RISK MITIGATION. 

In part, section 4.1.3 of DO-278 states:  “Risk mitigation techniques may be used to reduce the 
CNS/ATM system’s reliance on the COTS.  The goal of these mitigation techniques is to 
accommodate the assigned failure condition classification by reducing the effect of anomalous 
behavior of COTS on the CNS/ATM system function.  Risk mitigation techniques may be 
achieved through a combination of people, procedure, equipment, or architecture.  For example, 
architectural means may involve partitioning, redundancy, safety monitoring, COTS safe subsets 
by the use of encapsulation or wrappers, and data integrity checking” [2]. 
 
Stroup, et al. [14] identified four activities associated with an effective risk mitigation strategy 
for incorporation into a system specification.  These activities are hazard identification, assessing 
hazard effect and risk level, achieving requirements balance, and incorporating a balanced set of 
requirements into system specifications. 
 
5.2.1  Hazard Analysis of the HUMS. 

Figure 10 represents a model used to identify hazards from a safety perspective. 

Hazard
Adverse event that occurs as

a result of the cause(s)
- A condition that is

prerequisite to an accident

- Mission Need Statement
- Concept of Operations
- Architecture (NAS)
- Requirements

*Hazard

Hazard Analysis Model (Safety)

*Cause(s)
- Failures
- Malfunctions

*System State
- Condition
- Exposure
- Environment

* Items are tracked in
the FAA System Safety

Working Group's
Hazard Tracking and

Risk Resolution
(HTRR) Database.

 
 

FIGURE 10.  HAZARD ANALYSIS MODE [13] 
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The mission need statement, concept of operations, requirements, and NAS architecture are 
considered while documenting a list of hazards.  Also taken into account are the factors that 
cause the hazards and the different states in which that system is expected to perform, their 
environmental impact, and so on.  Table 3 provides an example of a hazard analysis performed 
on a HUMS.  Table 4 should be read as follows: 
 
• Column 1 (Number):  Numbers the hazard listed in the table. 

• Column 2:  Lists the particular subsystem being considered. 

• Column 3 (Hazard):  Describes the hazard under consideration. 

• Column 4 (Cause Description):  Provides a short description of the cause of the hazard. 

• Column 5 (Effect Description):  Provides a short description of the effect of the hazard. 

• Column 6 (Remedial Technique):  Provides a design technique that can detect and/or 
address the hazard under consideration. 

TABLE 3.  SAMPLE HAZARD ANALYSIS FOR A HUMS 

Causal Analysis 
No. 

HUMS 
Subsystem 

Under 
Consideration 

Hazard 
(Critical Event) Cause Effect Remedial Technique 

1 

  

Noise on 
communica-
tion channel. 

Important 
data can be 
corrupted. 

Message digests should 
be used to ensure data 
integrity. 

2 ACARS Data output from 
the ACARS 
network could be 
in an incorrect 
format. 

Noise bursts 
during 
transmission 
could have 
corrupted the 
data. 

Since the 
HUMS 
cannot 
understand 
the format, 
the packet 
will be 
rejected. 

Format transformation 
mechanisms should be 
thoroughly tested.  In 
case of dropped 
packets, retransmission 
should be requested. 

3 ACARS Data itself could 
be incorrect. 

The onboard 
sensors may 
become 
faulty. 

Erroneous 
data is 
transmitted. 

Range checks or other 
forms of checks should 
be employed on all 
received data, e.g., a 
device that measures 
height or temperature 
cannot show a very 
steep change in a short 
interval of time.   
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TABLE 3.  SAMPLE HAZARD ANALYSIS FOR A HUMS (Continued) 

Causal Analysis 
No. 

HUMS 
Subsystem 

Under 
Consideration 

Hazard 
(Critical Event) Cause Effect Remedial Technique 

4 ACARS It can cease to 
function. 

An onboard 
incident damages 
the device or the 
communication 
link. 

No data 
transmitted 
until new/ 
backup unit 
takes its place. 

Any lag/delay in 
messages received 
should be logged and 
flagged. 

5 ACARS Data sent to 
unintended 
recipient. 

Recipient not 
authenticated. 

Unauthorized 
access to 
important 
data. 

Authentication and 
encryption technique 
should be used. 

6 ACARS Data transmission 
is interrupted. 

Receiving 
substation may be 
out of service. 

Data sent is 
not received 
by the 
receiving 
station. 

Retransmission is 
tried once and then 
data is stored onboard.

7 ACARS Either party 
claims not to be 
part of the 
communication. 

A non-
repudiation 
mechanism is not 
used. 

Sender/ 
receiver may 
claim that they 
did not 
send/receive 
the data. 

Digital signature is 
used for the 
communication. 

8 ACARS Receiving ground 
station goes down

The COTS 
software used in 
the ground 
systems crashes. 

The receiving 
stations will 
not be able to 
receive 
messages, 
leading to lost 
messages. 

The ground station 
software should be 
tested thoroughly.  In 
case it is down, there 
should be a provision 
to store HUMS data 
on board. 

9 HUMS 
Database 

The database 
goes down. 

Power failure, 
database fails 
during execution. 

Data cannot be 
accessed. 

A backup 
module/power supply 
should be present to 
take over in case of an 
emergency. 
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TABLE 3.  SAMPLE HAZARD ANALYSIS FOR A HUMS (Continued) 

Causal Analysis 
No. 

HUMS 
Subsystem 

Under 
Consideration 

Hazard 
(Critical Event) Cause Effect Remedial Technique 

10 HUMS 
Database 

The database 
goes down and 
when brought up 
again, it is in an 
inconsistent 
state. 

Efficient 
check 
pointing 
mechanism 
not employed.

The data is in 
an inconsistent 
state. 

Prior tested check 
pointing mechanism 
should be employed.  
Redundancy should be 
used for alternate 
forms of check 
pointing. 

11 HUMS 
Database 

Attempt can be 
made to make 
unauthorized 
access to the 
repository. 

Malicious 
user trying to 
gain access. 

Intruders can 
read/write data 
for which they 
have no 
authority. 

Authorization through 
some form of 
encryption is required 
for authentication. 

12 HUMS 
Database 

Attempt can be 
made to access 
data with no 
permissions. 

Malicious 
user trying to 
gain access. 

Intruders can 
read/write 
data. 

Check access rights 
for users before any 
read/write. 

13 HUMS 
Database 

HUMS 
incorrectly 
calculates the 
lifetime or 
maintenance 
decision related 
to one or more 
parts. 

Human or 
system error 

Incorrect data   
will be stored 
and/or 
transmitted. 

Periodic manual 
checks should also be 
performed. 

14 HUMS 
Database 

Parts are 
incorrectly 
associated with 
the wrong 
vehicle. 

Human or 
system error 

Incorrect data 
and/or 
associations 
between data 
will be stored. 

Periodic manual 
checks should also be 
performed. 

15 HUMS 
Database 

Data is corrupted 
during storage. 

Noise bursts 
or power 
surges. 

Incorrect data 
accessed by 
applications. 

Validation 
mechanisms such as 
checksum should be 
present to ensure data 
integrity. 
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TABLE 3.  SAMPLE HAZARD ANALYSIS FOR A HUMS (Continued) 

Causal Analysis 
No. 

HUMS 
Subsystem 

Under 
Consideration 

Hazard 
(Critical Event) Cause Effect Remedial Technique 

16 HUMS 
Database 

The interface 
software to the 
HUMS and the 
repository 
software do not 
integrate very 
well. 

The COTS 
software 
modules used 
do not 
integrate very 
well. 

The repository 
cannot be 
accessed. 

When choosing COTS 
software modules, 
integration issues 
between them must be 
considered. 

17 HUMS 
Database 

The repository is 
not designed to 
cope with the 
workload. 

Too many 
requests 
generated. 

The repository 
is not able to 
service all 
requests and 
may go down, 
or there may 
be a severe 
performance 
hit. 

The approximate 
request load should be 
anticipated, and an 
appropriate repository 
must be selected. 

18 HUMS 
Database 

The primary and 
backup 
repositories are 
not synchronized 
properly. 

Periodic 
synchroni-
zation of 
repositories 
not enforced. 

When the 
backup 
repository 
takes over, 
errors may 
arise.   

The primary and 
backup repositories 
should be 
synchronized 
periodically. 

19 HUMS 
Database 

The data may be 
corrupted as it is 
being transferred 
from the 
repository to the 
requesting 
application. 

System error Erroneous data 
is transferred 
to the 
application 
that requested 
it. 

The received data 
should be checked 
before use.  If 
erroneous, it should be 
rejected and the 
request retransmitted. 

20 HUMS 
Interface to 
Client 
Application 

Client attempts 
to connect to the 
HUMS database 
but does not get 
a response. 

The HUMS 
subsystem 
may be down.

Client will 
generate a 
request 
timeout error. 

Appropriate messages 
should be returned so 
that the client knows 
that there is an error at 
the HUMS. 

21 HUMS 
Interface to 
Client 
Application 

Client software 
does not support 
SSL/Encryption.

Outdated 
software 
being used by 
client. 

Client will not 
be able to 
connect to the 
HUMS. 

Specifications for the 
client machine and 
software should be 
provided. 
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TABLE 3.  SAMPLE HAZARD ANALYSIS FOR A HUMS (Continued) 

Causal Analysis 
No. 

HUMS 
Subsystem 

Under 
Consideration 

Hazard 
(Critical Event) Cause Effect Remedial Technique 

22 HUMS 
Interface to 
Client 
Application 

Client session 
remains inactive 
for a long time 
without being 
terminated. 

Incorrect 
logic being 
used for 
session 
timeout. 

Long sessions 
pose a security 
risk, as they 
can be hacked 
into. 

If no activity is 
registered for a period 
of time, the session 
should be terminated 
and have to be 
restarted. 

 
*SSL = Security sockets layer 
 
5.2.2  Vulnerability Analysis of the HUMS. 

Figure 11 represents a model used to identify hazards from a security perspective. 
 

Vulnerability Element
Normally expressed  in one

or more areas:
- Buffer Overflow
- Denial of Service
- Disclosure
- Modification

- Mission Need Statement
- Concept of Operations
- Architecture (NAS, ISS)
- Requirements

Threat(s)
- Malicious Attacks
- Unintended Acts
- Natural Events

Vulnerability
Element

System State
- Condition
- Exposure
- Environment
- Vulnerability

Proposed Vulnerability Analysis Model
(InfoSec)

 
 

FIGURE 11.  VULNERABILITY ANALYSIS MODEL [13] 
 
The mission need statement, concept of operations, requirements, and NAS architecture are 
considered while documenting a list of hazards.  Also taken into account are the factors that 
cause the vulnerabilities and the various states in which the system is expected to perform, their 
environmental impact and so on. 
 
Table 4 provides an example vulnerability analysis performed on the various modules of the 
architecture proposed in figure 11 [13]. 
 

 42



 

TABLE 4.  SAMPLE VULNERABILITY ANALYSIS FOR A HUMS 

No. 

HUMS 
Subsystem 

Under 
Consideration Threat Effect Remedial Technique 

1 ACARS Data can be intercepted 
during transmission by 
hackers. 

Unauthorized access 
gained to important 
data. 

Encryption should be 
used during 
transmission. 

2 ACARS Data can be corrupted 
during transmission by 
hackers. 

Important data can be 
corrupted. 

Message digests should 
be used to ensure data 
integrity. 

3 ACARS Encryption key is 
compromised 

Unauthorized access 
to important data. 

The session key is 
changed frequently. 

4 ACARS Denial of Service Receiver is unable to 
handle incoming 
requests. 

Intrusion detection 
mechanism is 
employed. 

5 HUMS Gateway Attacker launches a 
DoS attack on the 
HUMS gateway. 

The HUMS database 
is incapable of 
handling data.   

Host-based and 
network-based 
intrusion detection can 
be used to detect and 
respond to DoS attacks.

6 HUMS 
Database 

Attacker compromises 
the secret key used for 
validating ACARS. 

An attacker can now 
pretend to be the 
ACARS node that is 
sending data to the 
HUMS.   

Efficient key storing 
techniques must be 
employed.  Also, key 
lengths should be 
longer, and key setup 
techniques should be 
chosen to make the 
task of an attacker 
difficult. 

7 HUMS Internal 
Network 

An insider who has 
access to the private 
network can sniff the 
network or disrupt data 
transfer across it. 

The confidentiality of 
transmissions 
between HUMS and 
other entities in the 
private network is 
compromised. 

Network monitoring 
tools that can detect 
and thwart such attacks 
should be used. 
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TABLE 4.  SAMPLE VULNERABILITY ANALYSIS FOR A HUMS (Continued) 

No. 

HUMS 
Subsystem 

Under 
Consideration Threat Effect Remedial Technique 

8 HUMS 
Gateway 

The COTS software 
running on the HUMS 
gateway may be 
vulnerable to buffer 
overflow attacks. 

An attacker can use a 
buffer overflow 
attack to run his code 
on the system, which 
will result in 
compromise of the 
gateway. 

The software must be 
analyzed for 
vulnerability to buffer 
overflow attacks. 

9 COTS 
Software 

Attackers can exploit 
bugs and other 
vulnerabilities in 
software.   

Trojans, backdoors, 
bugs, and other 
vulnerabilities in 
COTS software can 
result in compromise 
of sensitive 
information.   

Bug reports and mailing 
lists of COTS 
components should be 
periodically checked to 
ensure that all patches 
are duly installed on the 
COTS software. 

10 COTS 
Software 

New updates/matches 
may cause a previous 
bug to resurface, 
resulting in a threat to 
security. 

Previously corrected 
bugs continue to 
contribute to the 
vulnerability of the 
system. 

Updates/patches should 
be installed carefully to 
avoid any undesirable 
side effects.  Exhaustive 
testing should be done 
each time. 

11 COTS 
Software 

A user may install 
malicious software that 
may result in the 
transfer of data 
different from that 
requested. 

Incorrect data will be 
supplied to 
requesting entities.   

Inherent intrusion 
detection techniques 
employed in databases 
ensure that intrusions 
are detected and 
prevented. 

 
5.3  CONSIDERATIONS FOR INTEGRATED SAFETY AND SECURITY APPROACHES. 

Safety and security cannot be considered orthogonal to each other.  For any effective risk 
mitigation strategy, both have to be taken into account.  The advantages of this are twofold [14]:  
 
• System deployment goals can be more effectively achieved when system safety and 

information security issues are resolved and risk mitigation requirements are 
implemented during the design phase. 

• It is less expensive to accommodate risk mitigation strategies at the design phase, rather 
than during project completion. 
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Sections 5.2.1 and 5.2.2 provided example hazard and vulnerability analyses performed on the 
HUMS.  The identified hazards and vulnerabilities are then viewed from the point of view of 
their hazard effect and likelihood and are assigned a risk level.  (Refer to section 4.2 for details 
about hazard effect and likelihood.)  A risk mitigation strategy is adopted for each hazard and 
vulnerability corresponding to its risk level.  This strategy may in turn affect some of the original 
requirement definitions.  The changes in requirements are then incorporated into the system 
specifications.  This risk management strategy is illustrated in figure 12. 
 
 

Hazard Effect

Likelihood

Risk Level 

Risk 
Mitigation 
Strategy

Requirements 
Integration 

 
 
 

Hazard Analysis 

 
 
 

Vulnerability Analysis 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIGURE 12.  RISK MANAGEMENT STRATEGY [13] 
 
6.  STUDY OF DATA INTEGRITY IN GROUND-BASED SYSTEMS. 

Two case studies were performed to analyze data integrity in ground-based systems.  Each case 
study used a different approach.  In case study 1, two COTS components were considered:  one 
that did not participate in HUMS part-life determination (i.e., the Microsoft Windows OS) and 
one that did take part in HUMS part-life determination (i.e., Microsoft Access).  Here, the term 
part-life determination refers to the information and maintenance policy used to determine the 
lifetime of parts.  All objectives of DO-278 (Tables A-1 through A-10 and COTS Tables 4-1 
through 4-3) were considered.  In case study 2, a study was performed on a generic HUMS using 
the COTS-specific guidance of DO-278, specific to a COTS DBMS package. 
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6.1  CASE STUDY OF COTS HAVING DIFFERING HUMS PART ACTIONS (CASE 
STUDY 1). 

DO-178B [1] provides guidance for software used in airborne systems, while DO-278 [2] 
provides guidance for ground-based systems.  However, the HUMS AC only recognizes 
DO-178B, and not DO-278, as an acceptable standard for the HUMS airborne and ground-based 
system software.  This report focuses on ground-based COTS systems, and therefore, uses 
DO-278 for software assurance guidance.  In many areas of ground-based software operations, 
the accountability of DO-278 objectives should be made on a case-by-case basis.  A preferred 
method of determining the applicability of DO-278 objectives would be to perform a detailed 
analysis of each system component for all the objectives of DO-278 guidance document and 
provide a rationale of compliance.  A sample of the research investigation into this technique is 
presented below, specific for the HUMS system under study.  Of key importance in this 
technique is the component’s assigned assurance level from the system safety assessment. 
 
Per the HUMS AC, the level of assurance for the HUMS application will be based on the results 
of the FHA.  The FHA will identify what the effects will be on the aircraft if the HUMS 
application provides misleading information.  The determined failure condition categories for the 
HUMS functions will depend on the functions provided by the HUMS.  For example, a HUMS 
that is used to do rotor track and balance may be assessed to result in a major failure condition 
category should the HUMS fail to perform this function correctly.  However, a HUMS that 
tracks effective usage hours for a critical structural component may result in either a catastrophic 
or a hazardous/severe-major failure condition category. 
 
The method applied to both COTS case studies was targeted to DO-278’s AL4, which is a new 
level that is not present in DO-178B.  The primary reason to select AL4 was to exercise this new 
assurance level to analyze how applicable are its objectives given the information available for 
COTS components.  Some assurance levels in DO-178B (airborne software guidance) map 
directly to DO-278 (ground-based software guidance).  For instance, DO-178B Level C maps to 
AL3 and DO-178B level D maps to AL5.  However, AL4 in DO-278 “was developed to account 
for certain CNS/ATM systems where AL3 was too stringent and AL5 was too lenient.”  From 
DO-178B, level C could cause or contribute to a major failure condition and level D could cause 
or contribute to a minor failure condition.  Thus, AL4 is targeted somewhere between a major or 
minor failure condition.  Only those DO-278 objectives for AL4 were considered in the research 
investigation below. 
 
The two COTS products under study differ in that the Microsoft Windows OS does not make 
any determination of the part’s suitability for remaining on-aircraft.  The other COTS product, 
Microsoft Access, will make a part-life determination for the aircraft.  Many of the objectives 
investigated for this assurance level resulted in identical activities for both COTS products 
needing to meet the objective.  For instance, the planning objectives of DO-278 must be clearly 
met for both the Microsoft Windows OS and Microsoft Access.  However, other objectives were 
not necessary for both COTS products.  For example, the objective on software architecture is 
completely unimportant for the Microsoft Windows OS COTS product because it makes no part-
life decisions.  One the other hand, Microsoft Access does make those decisions and, therefore, 
an understanding of the software architecture is necessary.  Given this disparity based on part-
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life, one could argue that the two components are essentially at two different assurance levels.  
However, with an integrated system component (such as an OS) there are operations that are 
performed at a variety of functional levels, which is problematic in the acceptance process. 
 
The resultant objectives reported in table 5 from this research investigation are only those 
objectives that showed different activities of objective compliance between a non-part-life 
decision COTS (Microsoft Windows OS) and a part-life decision process (Microsoft Access). 
 
The terms applicable, partial, and N/A used in table 5 are explained below. 
 
• Applicable.  The term applicable means that given the information available, the 

corresponding objective may be applied fully. 

• Partial.  The term partial means that given the information available, the corresponding 
objective may be applied only partially, and further methods of compliance would be 
needed to fully comply with the objective. 

• N/A.  The term N/A means that given the information available, the corresponding 
objective may not be applied. 

 
The analysis in table 5 is only based on the demonstration HUMS for this study, and should not 
be used as a recommendation for similar systems. 
 

TABLE 5.  ANALYSIS OF DO-278, AL4, FOR TWO COTS COMPONENTS 

DO-278 
Annex A 
Reference Objective 

Paragraph 
Reference

Microsoft Windows OS 
(has no part-life effect) 

Microsoft Access  
(affects part-life decisions)

2-3 Software 
architecture is 
developed.  
(A-2,2) 

5.2.1a Partial:  Not applicable except any 
architectural issues arising during 
integration of the COTS OS into the 
HUMS system (e.g., a partitioned 
system or process management) 

Applicable:  for Microsoft 
Access setup and data 
structures. 

2-8 Adaptation data 
and related 
processes are 
defined (when 
applicable).   
(A-2,4)  

4.2 N/A:  Adaptation data is HUMS 
specific information designed for 
future updates, such as part-life 
algorithm coefficients.  In this case, 
the Microsoft Windows OS has no 
impact on this data. 

Applicable 
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TABLE 5.  ANALYSIS OF DO-278, AL4, FOR TWO COTS COMPONENTS (Continued) 

DO-278 
Annex A 
Reference Objective 

Paragraph 
Reference

Microsoft Windows OS 
(has no part-life effect) 

Microsoft Access  
(affects part-life decisions)

3-7 Algorithms are 
accurate.  
(A-3,2) 

6.3.1g Partial:  Algorithms used in the 
COTS components are proprietary.  
However, for certain special cases, 
this objective needs to be met.  For 
example, error correction codes 
performed in OS drivers and similar 
related functions must meet this 
objective.  Proof of accuracy needs to 
be provided by vendor, or applicant 
must verify the function correctness. 

Applicable:  Although 
there is no access to the 
actual algorithm used, it 
can be verified via 
functional correctness. 

4-7 Algorithms are 
accurate.  (A-
4,1 and A-4,3) 

6.3.2g  Partial:  Algorithms used in the 
COTS components are proprietary.  
However, for certain special cases, 
this objective needs to be met.  For 
example, error correction codes 
performed in OS drivers and similar 
related functions must meet this 
objective.  Proof of accuracy needs to 
be provided by vendor, or applicant 
must verify the function correctness. 

Applicable:  Although 
typically there is no access 
to the actual algorithm, it 
can be verified via 
functional correctness. 

4-8 Software 
architecture is 
compatible with 
high-level 
requirements. 

6.3.3a Partial:  The need to accommodate 
this objective is very project specific.  
While the details of the exact 
software architecture used are 
proprietary, there may be alternate 
means to demonstrate that the 
architecture meets the high-level 
requirements.  Some requirements 
may need an understanding of the OS 
architecture, e.g., task queuing, 
which must be demonstrated to 
comply with the high- level 
requirements.  There are also 
examples of how the architecture of 
the OS is not needed, e.g., logging 
into the OS. 

Applicable:  Need 
verification via Microsoft 
Access API. 

4-9 Software 
architecture is 
consistent.  (A-
4,4) 

6.3.3b Partial:  same as 4-8 Applicable:  need 
verification via Microsoft 
Access API. 
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TABLE 5.  ANALYSIS OF DO-278, AL4, FOR TWO COTS COMPONENTS (Continued) 

DO-278 
Annex A 
Reference Objective 

Paragraph 
Reference

Microsoft Windows OS 
(has no part-life effect) 

Microsoft Access  
(affects part-life decisions)

4-10 Software 
architecture is 
compatible with 
target computer.  
(A-4,2;A-
4,5;A-4,6) 

6.3.3c Partial:  same as 4-8. Applicable:  need 
verification via Microsoft 
Access API. 

4-13 Software 
partitioning 
integrity is 
confirmed.  
(A-4,8) 

6.3.3f Applicable:  If the OS supplies 
partitioning, then it should be 
confirmed.  Other system 
components such as Microsoft 
Access would require confirmation 
that the OS supplies effective 
partitioning such that Microsoft 
Access does not interfere with other 
component operation. 

N/A:  However, one 
exception is that 
confirmation is needed to 
assure that Microsoft 
Access does not violate any 
partition mechanism, 
should such a system have 
partition mechanisms. 

7-1 Test procedures 
are correct.   

6.3.6b Partial:  Test procedure correctness is 
not needed for Microsoft Windows 
OS.  However, procedures for testing 
of the integrated COTS component in 
the HUMS system would need to be 
verified as correct. 

Applicable for HUMS 
specific requirements at 
this level 4, but as one goes 
higher in the assurance 
levels, a question arises 
about needing the COTS 
vendor test procedures and 
results. 

7-2 Test results are 
correct and 
discrepancies 
explained. 

6.3.6c Partial:  Typically test results are not 
available.  However, procedures for 
testing of the integrated COTS 
component in the HUMS system 
would have to be verified as correct. 

Applicable for HUMS 
specific requirements at 
this level 4, but as one goes 
higher in the assurance 
levels, a question arises 
about needing the COTS 
vendor test procedures and 
results. 

8-6 Software life 
cycle 
environment 
control is 
established. 

7.2.9 N/A:  No control over the 
development process of the COTS 
product. 

N/A for AL4, but as one 
goes higher in the AL it 
may be a factor. 
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TABLE 5.  ANALYSIS OF DO-278, AL4, FOR TWO COTS COMPONENTS (Continued) 

DO-278 
Annex A 
Reference Objective 

Paragraph 
Reference

Microsoft Windows OS 
(has no part-life effect) 

Microsoft Access  
(affects part-life decisions)

Adaptation 
Data 

        

4.2.1a The data that 
may be adapted 
for a particular 
location is 
defined. 

4.2.1.a N/A for a Microsoft Windows OS, 
except for isolated cases such as an 
IP address. 

Applicable 

4.2.1b The 
mechanisms for 
generating and 
modifying 
adaptation data 
are defined for 
each location. 

4.2.1.b N/A for a Microsoft Windows OS, 
except for isolated cases such as an 
IP address. 

Applicable 

4.2.1c The objectives 
for verification, 
software quality 
assurance, 
software 
configuration 
management, 
and approval 
processes are 
satisfied for 
each location. 

4.2.1.c N/A for a Microsoft Windows OS, 
except for isolated cases such as an 
IP address. 

Applicable 

 
API = Application Programming Interface 
IP = Internet Protocol  
Note:  DO-278 Annex A sections 4.2.1a, 4.2.1b, and 4.2.1c are related to adaptation data. 
 
6.2  CASE STUDY OF A WIDELY USED COTS DBMS WITHIN A HUMS CONTEXT 
(CASE STUDY 2). 

Case study 2 was also performed on an in-service, generic HUMS using the COTS-specific 
guidance of DO-278.  A generic HUMS was selected for the case study because it is a ground-
based system and uses COTS components, specifically, a database management component. 
 
The case study in this section makes no judgment about the applicability of the objective to this 
particular COTS component.  This study, rather, assumes each objective must be met and 
discusses the issues that arise when considering the objectives for such a DBMS component. 
 
Although the FAA HUMS ACs’ guidance does not call out DO-278, it is used for this case study 
because it provides relevant information for ground-based systems using COTS components.  
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The lessons learned from this case study might also apply to other ground-based systems, such as 
CNS/ATM systems. 
 
This section describes the case study, using a particular DBMS as a representative COTS 
product and applying the COTS-specific objectives and activities described in Section 4 of DO-
278. 
 
Figure 13 illustrates the generic HUMS.  The COTS components, which are used in the 
construction of this HUMS, are: 
 
• ACARS 

• COTS installation software 

• COTS Common Object Request Broker Architecture (CORBA)—compliant 
communications software 

• COTS Relational DBMS 

 
FIGURE 13.  REPRESENTATIVE GROUND-BASED SYSTEM 

 
Database management systems are used in a wide variety of applications.  A very commonly 
used, extensive DBMS is selected for this case study.  The particular DBMS is a representative  
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COTS product because of its complexity, which provides a sample to exercise DO-278, and 
because of its widespread use, adds to the applicability and value to this study. 
 
Like many vendors of sophisticated software, the vendor of the example COTS database 
maintains an extensive web site that contains a great deal of information about their products.  
The COTS database vendor also encourages communication within their user community.  
Table 6 summarizes how the information available regarding the COTS database might be used 
to exercise DO-278 coverage of COTS-related objectives.  Table 6 describes the DO-278 
objective and associated lessons learned.  For a clearer understanding of the lessons learned, 
refer to DO-278 activities supporting the objective. 
 

TABLE 6.  DO-278 COTS-RELATED OBJECTIVES—CASE STUDY 2 

DO-278 
Objective 
Reference 

DO-278 Objective 
Description Lessons Learned 

4.1.4.1.a Activities for 
acquisition and integral 
processes, including 
additional 
considerations, 
integration, and 
maintenance, are 
defined. 

• The database life cycle data has limited availability, 
and the life cycle description is not apparent. 

• The integration of this highly commercialized 
database was not difficult; however, a COTS product 
more tightly coupled with the ground-based system 
may increase integration-specific activities. 

• Historical information was difficult to obtain.  User 
discussion forums may offer some insight, but this 
may provide little justification toward product 
acceptance. 

• Guidance in DO-278 with respect to COTS vendor 
qualifications was difficult to interpret for the 
activity associated with this objective, as the level of 
qualification requested is not quantitatively 
understood.  This area needs improvement in 
DO-278. 

• In general, it would not be suggested that the 
developers of the ground-based system attempt to 
modify the COTS database beyond the normal 
customizing capabilities of the COTS product.  In 
particular, if modifications are necessary, vendor 
support might not be available and associated 
verification would be difficult. 

• In the COTS acquisition planning process, 
consideration should be given to acquiring access to 
discussion and other related forums to assist in 
determining the maintenance and health of particular 
versions. 
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TABLE 6.  DO-278 COTS-RELATED OBJECTIVES—CASE STUDY 2 (Continued) 

DO-278 
Objective 
Reference 

DO-278 Objective 
Description Lessons Learned 

4.1.4.1.a 
(Continued) 
 

 • Summary—There may not presently be any COTS 
products that were developed to explicitly support 
DO-278 compliance with respect to applications that 
incorporate the COTS.  As such, the customer 
would be required to analyze and discuss with the 
vendor its ability to meet these objectives. 

4.1.4.1.b Transition criteria for 
these processes and 
transition criteria with 
respect to CNS/ATM 
software life cycle 
processes are defined. 

• No COTS integral process was found in DO-278, 
yet it asks for the integral process to be defined.  
The assumption made was that the term integral 
process is used from DO-178B and represents the 
planning, verification, quality assurance, and 
configuration management activities.  However, 
DO-278 should include a reference to the DO-178B 
integral process description for first time users. 

• COTS vendor transition criteria were not available 
from this database developer. 

4.1.4.1.c Plans for COTS 
processes, including 
COTS transition 
criteria, are consistent 
with the supplier’s 
software plans. 

• Plans were not available from the COTS vendor.  
Plan consistency per DO-278 was not possible for 
this particular COTS product. 

• In reviewing the transition criteria guidance in DO-
278 and DO-178B as applied to COTS products, it 
was difficult to assess the real guidance being 
offered.  This portion of DO-278 was found to be 
weak; it needed better definition for proper 
understanding of the objective’s true intent. 

4.1.5.1.a The degree to which 
of the CNS/ATM 
software requirements 
are satisfied by the 
COTS capabilities is 
determined. 

• The supplier’s target system offered two different 
database packages.  The flexibility of having two 
different database packages to choose from may 
require two separate requirement traceability 
matrices. 

• Technical consulting from the COTS vendor may be 
one mechanism for assisting the effort to have the 
COTS database software meet DO-278 
requirements. 
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TABLE 6.  DO-278 COTS-RELATED OBJECTIVES—CASE STUDY 2 (Continued) 

DO-278 
Objective 
Reference 

DO-278 Objective 
Description Lessons Learned 

4.1.5.1.b The adequacy of life 
cycle data available 
for assurance 
purposes is 
determined. 

• The life cycle data for this database was not readily 
available, and no evaluation as to the adequacy of 
the COTS life cycle data has been made. 

• This highly commercialized product leaned toward 
lack of support for older versions.  If the COTS 
components are upgraded to be current in the 
ground-based application, then the vendors who 
provide them will more likely support the COTS 
components. 

4.1.5.1.c(1) The derived 
requirements are 
identified.  Derived 
requirements consist 
of (1) Requirements 
imposed on the 
CNS/ATM system 
due to the usage of 
COTS and (2) 
Requirements to 
prevent the unneeded 
capabilities of the 
COTS from 
adversely affecting 
the CNS/ATM 
system. 

• The subject database included undesirable 
capabilities such as automatic database calculation 
update.  Automatic functions such as this may 
require additional requirements by the application in 
both development and installation. 

4.1.5.1.d The compatibility of 
COTS with target 
hardware and other 
ground-based 
software is assured. 

• The COTS database would be compatible with the 
target environment.  However, the vendor’s 
information does not, and cannot reasonably, cover 
every possible configuration of the target 
environment.  Careful functional testing by the 
supplier is required. 
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TABLE 6.  DO-278 COTS-RELATED OBJECTIVES—CASE STUDY 2 (Continued) 

DO-278 
Objective 
Reference 

DO-278 Objective 
Description Lessons Learned 

4.1.6.1 Section 4.1.6.1 of DO-
278 states “There are 
no additional 
verification objectives 
imposed upon the 
CNS/ATM system 
[HUMS being 
developed] because of 
the use of COTS.”  
However, it is still 
necessary to meet the 
verification objectives 
of the 10 tables in 
section 3 of DO-278.  
(Note:  Brackets added 
for clarity.) 

• High-level requirements coverage is possible; low-
level requirements are problematic.  Other areas of 
difficulty included requirement traceability and 
conformity to standards. 

• Supplemental software (glue code, etc.) is mainly 
developed by the applicant/supplier and as such can 
fully follow DO-278 in both development and 
verification.  However, if the COTS vendor supplies 
this code, then alternate means may be required to 
comply with this objective. 

• Because the application under study here is of a very 
low assurance level (perhaps AL5 or AL6), few of 
these objectives are required to be met.  It is clear, 
however, that arguing compliance to AL1 or AL2 
would be very difficult with a COTS component 
unless the supplier had access to details and data 
regarding the development of the COTS component.  
One would surmise that the COTS component would 
need to have been developed under DO-178B or 
DO-278 guidance to accomplish these assurance 
level goals. 

4.1.7.1.a The COTS specific 
configuration and data 
items (for example, 
software, 
documentation, 
adaptation data) are 
uniquely identified in 
the CNS/ATM 
software configuration 
management system. 

• The vendor’s COTS software identification was 
apparent, but the developer of the ground-based 
system is responsible for coordinating the precise 
hardware and OS configurations to be used with the 
COTS database configuration.  Anecdotal data also 
suggest that some COTS vendors may not have 
proper control of their delivered product; subsequent 
deliveries may not have been based on previous 
deliveries. 
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TABLE 6.  DO-278 COTS-RELATED OBJECTIVES—CASE STUDY 2 (Continued) 

DO-278 
Objective 
Reference 

DO-278 Objective 
Description Lessons Learned 

4.1.7.1.c The CNS/ATM change 
control process ensures 
that the incorporation 
of COTS releases is 
controlled. 

• The COTS database vendor provides information 
regarding updating releases and versions of the 
database; however, the information is typically 
relevant to updating from the last release or version 
of the database to the current one.  Updating from 
releases or versions in the more distant past could 
present a problem from the perspective of obtaining 
adequate information.  However, the developer of the 
ground-based system should test the ground-based 
system with the upgraded COTS database to confirm 
the expected impact or lack of impact the upgrade 
will cause. 

 
6.3  THE COTS INSTALLATION SOFTWARE. 

Additionally, COTS installation software must be considered.  Although not explicitly 
mentioned, objectives for correct installation of software target computer systems are lacking in 
DO-278.  This would include verification that the installation package software for the ground-
based system has correctly installed the system using all selected installation target 
environments.  A COTS installation software package used on the subject system was studied to 
determine the information that would be available to help developers of the ground-based system 
verify that the installations of the ground-based systems would be correct.  Information regarding 
internal configuration control, testing, or source code for the COTS installation software does 
not appear to be readily available. 
 
7.  SUMMARY AND RECOMMENDATIONS. 

7.1  SUMMARY. 

Ground-based processing systems are likely to use COTS components for maintaining flight-
critical data.  Hence, the ground-based COTS processing systems must be trustworthy and secure 
to maintain the integrity of the data.  This report presents an investigation of the issues that arise 
from the use of COTS components in safety-critical systems and the approaches required to 
ensure flight-critical data integrity.  The research was focused on information and data 
protection, access security, and the processes and objectives for ensuring data integrity. 
 
The existing guidance governing the use of COTS components for safety-critical applications 
and the objectives of current guidance from the point of view of applicability and shortcomings 
were investigated.  The use of hazard analysis and vulnerability analysis as a means for 
developing an effective risk mitigation strategy was also investigated.  Individual COTS 
components such as the Microsoft Windows operating system and the Microsoft® Access® 
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DBMS were analyzed from a safety and security perspective.  An investigation of the relevance 
of the rotorcraft AC 27-1B Change 1 and AC 29-2C Change 1 to a COTS components scenario 
was presented.  To address security and vulnerability concerns, several technologies were 
investigated, such as encryption/decryption, authentication, access control, and intrusion 
detection, particularly in relation to application within a HUMS context. 
 
Two case studies involving COTS products were done to determine if the products can be 
certified by following existing certification guidance, such as DO-178B or DO-278.  This report 
presented a possible process using COTS components that can readily be analyzed.  In addition, 
feasibility of the presented process is demonstrated by the implementation of a proof-of-concept 
(POC) and scaled-down version of the HUMS system.  The architecture of this demonstration 
project shows that various security mechanisms can be incorporated in the design of this scaled-
down HUMS system.  Finally, a case study of COTS used in a different domain was completed 
to determine if lessons could be learned in the design process. 
 
7.2  RESULTS. 

The main result of the investigation was the analysis of the existing certification guidance for 
COTS component-based ground processing systems, including DO-178B, DO-278, and the 
HUMS AC, from the point of view of applicability and shortcomings.  It was also demonstrated 
how hazard analysis and vulnerability analysis can be used as a means for developing an 
effective risk mitigation strategy.  Using a commercial database in a COTS-based flight-
information system as a study case, the investigation led to several useful lessons, for instance, 
the life cycle data for the example database was not readily available, no evaluation as to the 
adequacy of the COTS life cycle data has been made, and the support for older versions was not 
available once the COTS components were upgraded. 
 
7.3  RECOMMENDATIONS. 

A future research task may be to investigate the issue of independence and redundancy of 
software systems.  Multiple-version redundancy has been offered in the HUMS AC 27-1B 
Change 1 and AC 29-2C Change 1 as a means for independent verification of ground-based 
COTS hardware and software equipment.  For example, if two software systems can justify that 
they do not have any common failures, it can be claimed that each may be used for an 
independent verification of the other.  Yet, improperly controlled or incorrect data submitted to 
redundant processing by a second dissimilar PC with different COTS components compared to 
the primary processor may in all probability still yield incorrect predictions. 
 
Another immediate recommended extension of this study is to investigate the effectiveness of 
various alternate approaches as mitigating actions in ground-based COTS systems.  Due to the 
nature of COTS components, it is not always possible to meet the required objectives.  In case 
these objectives are not met by the COTS components using a normal system design process, 
mitigating actions can be considered to increase the reliability, trustworthiness, and failsafe 
properties of the COTS systems.  It is recommended that these mitigating actions need to be 
taken at all three logical stages of flight data (data communication, processing, and storage) and 
should be based on a hazard assessment.  In addition, it is recommended to analyze the 
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effectiveness of mitigating actions based on application characteristics, such as non-time-critical 
and possible human intervention, and to determine the viability of making these mitigating 
actions a part of DO-178B or DO-278 guidance. 
 
Although not explicitly mentioned, objectives for correct installation of software target computer 
systems are lacking in DO-278.  It is recommended that COTS installation software must also be 
considered as an objective.  This would include verification that the installation package 
software for the ground-based system has correctly installed the system using all selected 
installation target environments. 
 
It is recommended that cryptography should be used in HUMS to make the ACARS signals 
secure with techniques such as secret key cryptography and public key cryptography, since 
anyone having a very high frequency or a high-frequency communication device that is within 
range of the transmissions can intercept these ACARS signals.  In addition, IDSs should be used 
in HUMS to enable detection and subsequent prevention of intruders into the network. 
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9.  GLOSSARY. 

Anomaly Detection Mode—A model in which intrusions are detected by looking for activity that 
is different from the user’s or system’s normal behavior. 
 
Assets—Information or resources to be protected by the countermeasures of a target of 
evaluation (TOE). 
 
Assurance—Grounds for confidence that an entity meets its security objectives. 
 
Attack—An attempt to bypass security controls on a computer.  The attack may alter, release, or 
deny data.  Whether an attack will succeed depends on the vulnerability of the computer system 
and the effectiveness of existing countermeasures. 
 
Audit—The independent examination of records and activities to ensure compliance with 
established controls, policy, and operational procedures, and to recommend any indicated 
changes in controls, policy, or procedures. 
 
Audit Trail—A chronological record of the system resource used in computer security systems.  
This includes user login, file access, various other activities, and whether any actual or attempted 
security violations occurred, legitimate and unauthorized. 
 
Buffer Overflow—This happens when more data is put into a buffer or holding area than the 
buffer can handle.  It results from a mismatch in processing rates between the producing and 
consuming processes.  This can result in a system crash or the creation of a back door leading to 
system access. 
 
Class—A grouping of families that share a common focus. 
 
Component—The smallest selectable set of elements that may be included in a protection profile 
(PP), a security target (ST), or a package. 
 
Compromise—An intrusion into a computer system where unauthorized disclosure, 
modification, or destruction of sensitive information may have occurred. 
 
Computer Abuse—The willful or negligent unauthorized activity that affects the availability, 
confidentiality, or integrity of computer resources.  Computer abuse includes fraud, 
embezzlement, theft, malicious damage, unauthorized use, denial-of-service (DoS), and 
misappropriation. 
 
Computer Security—Technological and managerial procedures applied to computer systems to 
ensure the availability, integrity, and confidentiality of managed information. 
 
COTS Installation Software—The software used to manually or automatically install some other 
COTS software, e.g., InstallShield®, WinZip™, etc. 
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Countermeasure—Action, device, procedure, technique, or other measure that reduces the 
vulnerability of an automated information system.  Countermeasures aimed at specific threats 
and vulnerabilities involve more sophisticated techniques, as well as activities traditionally 
perceived as security. 
 
Cryptography—The science concerning the principles, means, and methods for rendering 
plaintext unintelligible and for converting encrypted messages into intelligible form. 
 
Denial-of-Service—Action(s) that prevent any part of an automated information system (AIS) 
from functioning in accordance with its intended purpose. 
 
Dependency—A relationship between requirements where the requirement that is depended 
upon must normally be satisfied for the other requirements to be able to meet their objectives. 
 
Element —An indivisible security requirement. 
 
Evaluation—Assessment of a PP, ST, or TOE against defined criteria. 
 
Evaluation Assurance Level—A package consisting of assurance components from section 3 of 
DO-278 that represents a point on the common criteria (CC) predefined assurance scale. 
 
Evaluation Authority—A body that implements the CC for a specific community by means of an 
evaluation scheme and thereby sets the standards and monitors the quality of evaluations 
conducted by bodies within that community. 
 
Family—A group of components that share security objectives but may differ in emphasis or 
rigor. 
 
Firewall—A system or combination of systems that enforces a boundary between two or more 
networks.  It limits access between networks in accordance with local security policy.  The 
typical firewall is an inexpensive microbased UNIX® box, clean of critical data, that includes 
many modems and public network ports, but just one carefully watched connection back to the 
rest of the cluster. 
 
Hacker—A person who enjoys exploring the details of computers and how to stretch their 
capabilities, or a malicious or inquisitive meddler who tries to discover information by poking 
around. 
 
Hacking—An unauthorized use, or attempt to circumvent or bypass the security mechanisms, of 
an information system or network. 
 
Hazard—A state or set of conditions of a system (or an object) that, together with other 
conditions in the environment of the system (or object), will lead inevitably to an accident (loss 
event). 
 

 62

http://www.sans.org/newlook/resources/glossary.htm#AIS


 

Health—A measure of the overall flightworthiness of the aircraft.  Health is assessed by 
examining the instantaneous indicators of the well being of vital components on the aircraft as 
well as trend analysis of these indicators. 
 
Information Security—The result of any system of policies or procedures for identifying, 
controlling, and protecting from unauthorized disclosure, information whose protection is 
authorized by executive order or statute. 
 
Integrity—Assuring information will not be accidentally or maliciously altered or destroyed. 
 
Intrusion Detection—Pertaining to techniques that attempt to detect intrusion into a computer or 
network by observation of actions, security logs, or audit data.  Detection of break-ins or 
attempts, either manually or via software expert systems, that operate on logs or other 
information available on the network. 
 
Misuse Detection Model—The system detects intrusions by looking for activity that corresponds 
to known intrusion techniques or system vulnerabilities.  Also known as Rules Based Detection. 
 
Monitoring—The means by which information can be gathered on the aircraft’s vital systems. 
 
Network Based—Network traffic data along with audit data from the hosts used to detect 
intrusions. 
 
Network Security—Protection of networks and their services from unauthorized modification, 
destruction, or disclosure, and provision of assurance that the network performs its critical 
functions correctly, without harmful side effects.  Network security includes providing for data 
integrity. 
 
Package—A reusable set of either functional or assurance components (e.g., an evaluation of 
assurance level) combined together to satisfy a set of identified security objectives. 
 
Product—A package of information technology (IT) software, firmware or hardware that 
provides functionality designed for use or incorporation within a multiplicity of systems. 
 
Protection Profile—An implementation-independent set of security requirements for a category 
of TOEs that meet specific consumer needs. 
 
Risk—The hazard level combined with (1) the likelihood of the hazard leading to an accident 
(sometimes called danger) or compromise and (2) hazard exposure or duration (sometimes called 
latency). 
 
Role—A predefined set of rules establishing the allowed interactions between a user and the 
TOE. 
 
Safety—Freedom from unintentional accidents or losses. 
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Security—A condition that results from the establishment and maintenance of protective 
measures that ensure a state of inviolability from hostile acts or influences. 
 
Security Architecture—A detailed description of all aspects of the system that relate to security, 
along with a set of principles to guide the design.  Security architecture describes how the system 
is put together to satisfy the security requirements. 
 
Security Objective—A statement of intent to counter identified threats and/or satisfy identified 
organization security policies and assumptions. 
 
Security Target—A set of security requirements and specifications to be used as the basis for 
evaluation of an identified TOE. 
 
System—A specific IT installation with a particular purpose and operational environment. 
 
Target of Evaluation—An IT product or system and its associated administrator and user 
guidance documentation that is the subject of an evaluation. 
 
Use—A measure of how the life of components is being expended on the life-limited parts of the 
aircraft as well as determining the time to overhaul of major components. 
 
User—Any entity (human user or external IT entity) outside the TOE that interacts with the 
TOE. 
 
Vulnerability—Hardware, firmware, or software flow that leaves an AIS open for potential 
exploitation.  A weakness in automated system security procedures, administrative controls, 
physical layout, internal controls, etc., that could be exploited by a threat to gain unauthorized 
access to information or disrupt critical processing. 
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APPENDIX A—A PROOF-OF-CONCEPT DEMONSTRATION ARCHITECTURE 

This section outlines the architecture of the demonstration project.  The purpose of this appendix 
is to demonstrate the feasibility of the process described in section 6 of this report.  This is 
carried out by implementing a proof-of-concept (POC) and demonstrating a scaled-down version 
of the system, as described in section 6.  The requirements of this POC are 
 
• The system needs to be distributed to correctly reflect the real-life scenario of the Aircraft 

Communication Addressing and Reporting Systems (ACARS), the health and usage 
monitoring system (HUMS) engine, and client applications that run in physically 
different locations. 

 
• Follow an architecture similar (but scaled down) to the one proposed. 
 
• Demonstrate the use of technologies such as encryption, access control, and replication 

required for HUMS. 
 
• Simulate the different problems that could occur when using commercial off-the-shelf 

(COTS) components and a public network. 
 
• Have a graphical user interface (GUI) display to depict the various components such as 

the ACARS simulator, client, monitoring module, and so on. 
 
A.1  PROOF-OF-CONCEPT ARCHITECTURE. 

The HUMS demonstration project consists of three applications using client server and sockets 
technology for communication.  The three applications are the ACARS application, the HUMS 
application, and the client application. 
 
Figure A-1 shows a block diagram of the architecture to be used for the POC.  The HUMS and 
the data repository are assumed to be within a private network.  The data repository contains a 
replicated database of the health and usage data of aircraft components to mitigate failure or 
error conditions in one of the databases. 
 

 A-1



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIGURE A-1.  DEMONSTRATION PROJECT 

 
A brief description of the purpose of each application is given below: 
 
• ACARS Simulator.  The ACARS application generates simulated ACARS messages and 

sends them to the HUMS application over the network after using appropriate encryption.  
This is a Microsoft® Visual Basic® (VB) application with an appropriate GUI to allow 
the user to simulate different conditions in the network, such as failed authentication and 
buffer overflow attacks.  Then, an appropriate response from the HUMS system can be 
checked.  The ACARS application also provides a safety checklist that should be checked 
before a message is sent to the HUMS application. 

 
• HUMS Application.  The HUMS engine can be considered to be the heart of the system.  

It receives messages from the ACARS simulator and from the external clients.  The 
messages received from the ACARS simulator are reports about health and usage of 
aircraft parts, and are stored in the data repository.  The data repository itself employs a 
rudimentary replication scheme to illustrate error detection and remedial techniques in a 
COTS database.  The HUMS database also uses access control rules to authorize and 
authenticate all communication that takes place within the HUMS.  The external clients 
play the role of any third party application wishing to access the HUMS database, e.g., a 
maintenance crew.  The HUMS application is implemented in Microsoft VB. 
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• Client.  The client application simulates the working of external entities wishing to access 
the data present in the HUMS repository.  Each client must authenticate itself with the 
HUMS application before accessing the aircraft parts database. 

 
A.2  USING THE POC. 

The POC was used to learn lessons in the following areas: 
 
• Safety features to be used in ground-based systems that use COTS components 
• Security of ground-based systems that use COTS components 
• DO-278’s applicability, weaknesses, and strengths, as relevant to COTS software 
• HUMS guidance related to COTS 
• General ground-based systems implementation 
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APPENDIX B—SYSTEM SECURITY EVALUATION CRITERIA 

This section describes the Common Criteria for Information Technology Security Evaluation 
Model [B-1 through B-3].  The common criteria (CC) is used for evaluating the security 
properties of Information Technology (IT) systems and products.  The CC is to be used to 
compare and choose commercial off-the-shelf (COTS) components for ground-based systems. 
 
Deciding on which COTS components should be used in a ground-based system poses 
challenges: 
 
• Determining if a particular piece of software, hardware, or firmware exactly matches 

security needs of the health and usage monitoring system (HUMS), without leaving the 
system either exposed or expensively overprotected. 

 
• Plowing through the vendor type and obscure specifications of the COTS products that 

are available so as to choose components that will best protect the HUMS system. 
 
The CC Information Technology Security Evaluation, usually referred to as the CC, was 
designed to meet these challenges [B-4]. 
 
The CC provides a framework to rate products by Evaluation Assurance Level (EAL).  Each 
EAL embodies a recommended set of assurance requirements: the higher the EAL, the more 
secure the product.  The CC helps determine if a given product meets the security needs of a 
system.  By rating different products according to their EALs, the CC allows system engineers to 
comparison-shop and select appropriately secure products for the systems that use integrated 
COTS products. 
 
B.1  THE COMMON CRITERIA AND BUILDING BLOCKS. 

The CC for IT security evaluation is an international standard that supports the evaluation and 
development of security products [B-5]. 
 
The CC resulted from a combined effort by six countries:  Canada, France, Germany, United 
Kingdom, the Netherlands, and the United States.  The aim was to provide a set of criteria that 
could be used globally to assess the effectiveness of security products [B-6]. 
 
The CC builds upon the following standards: 
 
• Europe’s Information Technology Security Evaluation Criteria 
• The U.S.’s Trusted Computer System Evaluation Criteria 
• The Canadian Trusted Computer Product Evaluation Criteria 
 
The CC includes a combination of the best features of all these previous standards.  The 
culmination of this whole process is CC 2.1, which is formally recognized as International 
Organization for Standardization 15408. 
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The foundation of the CC is formed by the functional requirements and the assurance security 
requirements [B-1 through B-3].  The functional requirements state the security functionalities 
that a particular product intends to provide to the consumer.  Satisfying the functional 
requirements means that the assurance requirements have been met.   
 
Requirement constructs include package, protection profile (PP), and security target (ST). 
 
• Package.  A combination of requirements components that can help express a set of 

functional and assurance requirements that meet a subset of security objectives.  An 
example of a package would be functional requirements required for discretionary access 
controls. 

 
• Protection Profile.  A protection profile is an implementation-independent statement of 

security requirements that is shown to address threats that exist in a specified 
environment.  It contains a set of security requirements that may be drawn from the CC 
or stated explicitly.  The PP is needed to set up a standard for a particular product type. 

 
• Security Target.  It contains a set of security requirements that may be derived from a PP, 

stated explicitly, or drawn from a reference to CC functional or assurance components.  
The security target is the basis against which an evaluation is performed.  The security 
target contains the target of evaluation (TOE) security threats, objectives, requirements, 
and summary specification of security functions and assurance measures.  An ST is 
needed when a product is submitted for evaluation.  An ST is also used when a product is 
submitted to a consumer as a statement of the TOEs security functionality and evaluated 
configuration. 

 
B.1.1  SECURITY FUNCTIONAL REQUIREMENTS. 

Consumers of a product use security functional requirements for the purpose of guidance and 
reference when formulating statements of requirements for security functions.  Product 
developers can use security functional requirements for reference as well as for interpreting 
statements of functional requirements and then formulating the specifications for TOEs.  Finally, 
the evaluators of a product can use the security functional requirements as a mandatory statement 
of evaluation criteria when determining if a TOE meets the claimed security functions. 
 
Security functionality requirements are grouped into classes; all members of a class share a 
common focus.  The various security functionality classes contained in part 2 of the CC are 
[B-2]: 
 
• Audit 
• Identification and authentication 
• Cryptographic support  
• Security management  
• Communications  
• Privacy  
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• User data protection 
• Resource utilization 
• TOE access 
• Trusted path/channels 
• Protection of TOE security functions 
 
Each of these classes contains a number of families.  The requirements in each family share 
security objectives but differ in rigor or emphasis.  Each family contains one or more 
components, which may or may not be in a hierarchy. 
 
Consider, for example, the audit class that has six different families that deal with various 
aspects of auditing.  One of the families is Audit Generation.  The audit data generation family 
has two components that are nonhierarchical; one component deals with the generation of data 
and the other deals with the association of a user with an auditable event. 
 
B.1.2  SECURITY ASSURANCE REQUIREMENTS. 

Security assurance requirements aid the consumer in determining the level of assurance that is 
required.  The developer of the product uses the security assurance requirements when 
interpreting statements of assurance requirements and determining TOE assurance approaches.  
Product evaluators can use security assurance requirements as a mandatory statement of 
evaluation criteria when determining the assurance of TOE and also when evaluating PPs and 
STs.  The security assurance requirements are grouped into classes as follows [B-3]: 
 
• Configuration management  
• Guidance documents  
• Vulnerability assessment 
• Delivery and operation 
• Life cycle support    
• Assurance maintenance 
• Development   
• Tests 
 
Each of the classes contains a number of families, and the requirements within each family share 
a common objective.  As an example, the development class contains seven families that deal 
with various aspects of design documentation (e.g., functional specification). 
 
Each family includes one or more components that are in a strict hierarchy when more than one 
component exists in the family.  Consider, for example, the functional specification family.  The 
family contains four hierarchical components that deal with increasing completeness and 
formality in the presentation of the functional specification. 
 
The CC has provided seven predefined assurance packages, known as EALs.  These are 
explained in the next section. 
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B.1.3  COMMON CRITERIA EALs. 

The CC provides seven assurance packages on a rising scale of assurance levels known as EALs.  
These provide balanced groupings of assurance components that are intended to be generally 
applicable. 
 
The CC’s seven EALs define a scale for the criteria used in evaluating targets of evaluation.  
Ordered hierarchically by degree of assurance, the EALs balance the assurance level obtained 
with the cost and feasibility of acquiring it [B-3]. 
 
• EAL1:  Functionally Tested.  Applies when confidence in a product’s correct operation is 

needed, but security threats are not considered serious. 
 
An evaluation of the product at this level should prove that the TOE functions in a 
manner consistent with the documentation of the product, and that it provides useful 
protection against identified threats. 
 

• EAL2:  Structurally Tested.  Applies when either the developers or users require low-to-
moderate, independently assured security. 
 
This situation may occur in securing legacy systems or in cases of limited developer 
access. 
 

• EAL3:  Methodically Tested and Checked.  Applies when developers or users need a 
moderate level of independently assured security and a complete investigation of the 
TOE and its development, without substantial reengineering. 
 

• EAL4:  Methodically Designed, Tested, and Reviewed.  Applies when developers or 
users require moderate-to-high, independently assured security in conventional 
commodity products and are prepared to bear additional security-specific engineering 
costs.   
 

• EAL5:  Semiformally Designed and Tested.  Applies when developers or users require 
high, independently assured security in a planned development and require a rigorous 
development approach that does not incur unreasonable costs from specialist security 
engineering techniques. 
 

• EAL6:  Semiformally Verified Design and Tested.  Applies when developing security 
TOEs for application in situations involving high risk, where the value of the assets being 
protected justifies the additional costs. 
 

• EAL7:  Formally Verified Design and Tested.  Applies to the development of security 
TOE for application in extremely high-risk situations, as well as when the high value of 
the assets involved justifies the higher costs. 
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APPENDIX C—A CASE STUDY OF COTS USED IN A DIFFERENT DOMAIN 

To study the use of commercial off-the-shelf (COTS) in a different domain area for the purpose 
of safety and security, a nuclear certifiable tester for the Minuteman III Inter Continental 
Ballistic Missile (ICBM) was considered [C-1].  The purpose of the case study was to see if 
some lessons could be learned from the experience of designing the tester.  The application of 
the lessons learned from this case study was considered for the health and usage monitoring 
system (HUMS) case.  The entire case study is presented in the form of a series of questions 
relating to the safety and security issues. 
 
• What is the goal of a nuclear certifiable tester? 

 
The goal of a nuclear certification is to ensure that no system hardware or software can 
impact the safety of the weapons system. 
 

• Why did the old version of testing require changes? 
 

− The previous testing system was developed during the 1960s. 
− The method was outdated and difficult to maintain. 
− Criteria for safety had changed considerably. 
 

• Why was COTS chosen for any improvement initiative? 
 
− To reduce the design cycle and material costs. 
 

• What were the steps followed for the development of the system? 
 
− Requirements analysis 
− Requirements approval 
− Design 
− Design verification and validation, i.e. detailed analysis 
− Approval 
− Certification 
 

• What safety analysis steps were carried out? 
 
Safety requirements were captured in a Requirements Traceability Matrix.  This took 
inputs from the Prime Item Development Specification, Software Requirement 
Specification, and so on.  Effects of component failures were captured in the Failure 
Modes Effects and Criticality Analysis Report, which describes the effect of each 
possible component failure of custom designs and COTS components.  It also assigns a 
criticality factor to each failure (based on the severity of potential damage), provides a 
failure rate, and so on.  The Testability Design Analysis Report detailed where each 
failure effect is detected (e.g., during testing) and the system response to that failure.  The 
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Nuclear Surety Evaluation Report provides analysis and test results demonstrating that 
the system complies with the nuclear safety requirements. 

 
• What were the safety related design implementations used? 

 
To meet all stringent constraints using COTS components, a fence concept was 
developed.  The fence acts as a wrapper around COTS components.  Each signal passes 
through this fence, which monitors the signals for any faults.  If any fault is detected, the 
system is placed into a known safe state that disconnects all outputs and removes all 
stimuli sources by opening guard relays.  The inbuilt monitoring mechanisms of the 
COTS components were also used, as was redundancy.  For example, to use a COTS 
controller, dual-controller architecture was used.  If the primary controller fails, the 
secondary controller takes over.   
 

• What were the verification and validation steps taken? 
 
This was an iterative process.  Hardware and software were tested separately and then 
together.  Hardware was verified using discreet circuit simulations.  Software was 
verified by unit testing, function testing, and so on.  In addition, all software components 
were reviewed by software quality assurance to ensure that they complied with all stated 
requirements.  An independent software validation team carried out validation.   
 

• What were the software constraints of the project? 
 
− The software had to be developed under the DoD-STD-2167A methodology in a 

top-down design. 

− Use of a high-order language, like Ada or C++. 

− Ensuring memory integrity. 

− Prioritized interrupts. 

− Multitasking. 

• What were the main criteria in selecting the desired COTS components? 
 
− The operating system (OS) had to allow easy integration of COTS and custom 

equipment. 

− The OS must be mature and have sufficient documentation. 

− The selection of COTS instruments in the tester was driven by the requirements of 
functional tests. 

− Twenty-year service goal to ensure long product life, minimal spares, and 
budgets. 
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As can be seen from the above discussion, the justification for using COTS products is the same 
as that for HUMS applications (i.e., to reduce development time and costs).  Some of the lessons 
learned from this that can be applied to the COTS HUMS application are 
 
• The primary advantage gained in adopting a COTS approach is the reduction in design 

cycle time and costs.  This is a big motivation factor for the use of COTS. 

• The absolute necessity of a planning, requirement, design approval and certification 
process. 

• Sometimes COTS capabilities may have to be augmented by the use of a wrapper to 
incorporate safety and security guarantees. 
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